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Vorwort des Herausgebers

Thermisch-Hydraulisch-Mechanisch (THM) gekoppelte Prozesse spielen bei zahlreichen

Aufgabenstellungen der Geotechnik und darüber hinaus (Biomechanik, Geowissenschaften

etc.) eine sehr wichtige Rolle. Die diese Probleme beschreibenden Gruppen von gekoppel-

ten Differentialgleichungen werden sehr häufig mittels numerischer Verfahren behandelt.

Herr Dr. Yang geht in seiner Arbeit hingegen einen eher klassischen Weg. Unter der

Verwendung der Grundlagen der Poroelastizität fügt er seinen analytischen Herleitungen

die notwendigen thermischen und hydraulischen Prozesse hinzu und erzielt mittels unter-

schiedlicher numerischer Verfahren letztendlich Lösungen für die transiente Entwicklung

der zu Grunde liegenden Zustandsgrößen. Die verwendeten numerischen Verfahren werden

von ihm modifiziert und erfolgreich implementiert. Derartige analytische Lösungen er-

lauben effiziente Systembetrachtungen unter Variation der Systemparameter und können

zusätzlich als Referenzlösungen im Rahmen der Validierung von numerischen Verfahren

dienen.

Herr Dr. Yang präsentiert die allgemeine Lösung für einen geschichteten gesättigten

Halbraum unter Berücksichtigung der Thermo-Osmose (hier als Kopplung zwischen dem

Temperaturfeld und dem sowohl konvektiven als auch diffusen hydraulischen Transport

verstanden) und dem lokalen Ungleichgewicht der Temperaturen von Porenfluid und

Festkörper. Es zeigt sich, dass besonders im Nahfeld einer Temperaturquelle die Berück-

sichtigung dieser Prozesse zu signifikant erhöhten temperaturinduzierten Porenwasserdrü-

cken, Verformungen und hydraulischen Gradienten führt.

Die grundlegenden allgemeinen Gleichungen werden für eine thermische Quelle sowohl im

Halbraum als auch auf dessen Rand formuliert und numerisch gelöst. Zur Lösung der

Gleichungssysteme modifiziert Herr Dr. Yang zwei etablierte Verfahren der Mathematik

(“propagator matrix method” und “higher-order adaptive Gaussian quadrature method”)

erfolgreich. Ein solches System bildet näherungsweise die Situation von einem Endlager

für radioaktiven Abfall ab. Mittels einer Variation der Systemparameter gelingt es Herrn

Dr. Yang, die außerordentliche Bedeutung der Berücksichtigung der genannten Effekte

im Zusammenhang mit Materialien geringer Permeabilität aufzuzeigen.

Univ. Prof. Dr.-Ing. habil. Tom Schanz

Bochum, Dezember 2016
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Abstract

The goal of this research is to investigate the heat transfer mechanism and the influence of

temperature field on the behaviour of coupled thermo-hydro-mechanical system. In this

thesis, three problems in geosciences related to heat transfer and temperature-induced be-

haviour are considered and these problems are thermo-osmosis effects in saturated porous

media with a cylindrical borehole subjected to impulse thermal and mechanical loadings,

the analysis of multilayered thermoelastic media subjected to surface loadings containing

a heat source with application to heat-emitting high level nuclear waste repository and

heat transfer in geothermal heat-pump system in a single vertical borehole. These three

case studies related to problems in geosciences involving heat transfer and temperature-

induced behaviour are theoretically and numerically investigated.

The mathematical-physical models including geometrical approximations, governing equa-

tions for the considered physical processes, and the boundary and initial conditions for

these problems are formulated first. The analytical solutions for temperature, heat flux

and corresponding variables, e.g., displacement, pore pressure, fluid flux and stress, are

obtained and followed by a parametric study for each of the investigated problems aiming

to investigate the distribution of temperature field and the relevant temperature-induced

behaviour. Two special effects which closely relate with temperature field, i.e., thermo-

osmosis effect and the local thermal non-equilibrium effect, are taken into account and

numerically investigated for a kind of low-permeability clay. An improved propagator ma-

trix method and a numerical scheme of high-order adaptive Gaussian quadrature method

with continued fraction expansions are introduced in the analysis of multilayered geolog-

ical structure. The conclusions drawn could help to improve the design of the borehole

heat exchanger system and the repository of heat-emitting high level nuclear waste.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Untersuchung von Wärmetransportmechanismen und des

Einflusses von Temperaturfeldern auf das Verhalten von thermisch hydraulisch mecha-

nisch gekoppelten Systemen. Drei geowissenschaftliche Fragestellungen, in denen Wärme-

transport und temperaturabhängiges Systemverhalten relevant sind, werden betrachtet.

Zunächst werden am Beispiel eines zylindrischen Bohrlochs in einem Halbraum aus gesätt-

igten porösen Material unter thermischen und mechanischen Impulslasten thermo-osmosische

Effekte erfasst. Dann werden geschichtete thermoelastische Materialien im Hinblick auf

Lagerstätten für wärmeproduzierende hochnukleare Abfälle analysiert. Abschließend wird

der Wärmetransport eines geothermischen Wärmepumpensystems in einem vertikalen

Bohrloch abgebildet. Diese drei Fragestellungen zum Wärmetransport und temperat-

urabhängigen Verformungen werden theoretisch und numerisch untersucht.

Zunächst werden die mathematisch-physikalischen Modelle einschließlich der geometrischen

Annahmen, die grundlegenden Gleichungen zur Beschreibung der physikalischen Prozesse

und die Rand- und Anfangsbedingungen formuliert und dargelegt. Anschließend wer-

den die Gleichungen auf die drei Randwertprobleme angewendet. Für jede Fragestel-

lung werden die analytischen Lösungen für Temperaturverteilungen, Wärmefluss und den

dazugehörigen Größen, welche das temperaturabhängige Systemverhalten beschreiben,

wie Verschiebungen, Porenwasserdrücke, Flüssigkeitsbewegung und Spannungen, angegeben.

Mit Hilfe dieser Lösungen werden die Einflüsse einzelner Parameter auf die Temperatur-

felder und das Systemverhalten durch eine Parameterstudie analysiert. Zwei spezielle

Aspekte, thermo-osmosische Effekte und der lokale thermische Ungleichgewichtseffekt,

werden dabei berücksichtigt und für ein wenig durchlässiges Tonmaterial numerisch un-

tersucht. Zur Beschreibung von mehrfach geschichteten geologischen Strukturen wird

eine verbesserte Propagatormatrixmethode und die numerische Umsetzung einer adap-

tiven Gauß-Quadratur höherer Ordnung eingeführt. Die gewonnenen Ergebnisse können

Hinweise zur Verbesserung des Entwurfes von Bohrlochwärmetauschern und Lagerstätten

für wärmeerzeugende hochradioaktive Abfällen geben.
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1 Introduction

1.1 Introduction

Heat transfer is the process of energy exchange in physical systems. The rate of heat

transfer depends on the temperature differences and the physical properties of the inter-

vening medium through which the heat is transferred. The transfer direction is normally

from a region of high temperature to the one of low temperature. The process will cease

until all the involved systems reach the thermal equilibrium state. Generally speaking,

there are three fundamental modes of heat transfer:

• Heat conduction. By means of molecular agitation, energy will transfer between

systems which are directly in physical contact. Fourier’s law is primarily to describe

the mechanism of heat conduction.

• Heat convection. Due to the mass motion of the fluid such as air or water, energy

will be carried and transferred between the system and its environment.

• Heat radiation. In a vacuum or transparent medium, energy will transfer by means

of emission of photons in electromagnetic waves. The Stefan-Boltzmann equation

is used to describe the radiant transfer rate in a vacuum.

Heat transfer and a temperature-induced behaviour commonly exist both in nature and

engineering. Various industrial activities are closely concerned with heat transfer and

temperature fields. For instance, the investigation of heat conduction process always

plays an important role in geothermal energy exploitation (Figure 1.1) where heat is

generated from radioactive decay and continual heat loss from earth’s formation. The

usage of solar energy will largely encourage our contributions on the study of radiant heat

transfer. In the daily life, various of heat exchangers used for more efficient heat transfer

or to dissipate heat are widely used in refrigeration, air conditioning, space heating, power

generation, car’s radiator, etc.

Due to the common existence of heat, the temperature-induced/coupled behaviour should

be carefully reconsidered. A vivid example is about radioactive waste management, where

1
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Figure 1.1: Typical application of a BHE/heat pump system in a Central European home

(Sanner et al. 2003)

the waste is regarded as a decaying heat source as shown in Figure 1.2 and a deep geological

repository is usually suggested. In this case, a thermoelastic or thermoporoelastic model

should be established and the temperature-induced behaviour should be carefully investi-

gated. As the development of interdisciplinary, numerous complex coupled processes be-

come more and more obvious and get increasing attentions. The commonly used models

for the coupled processes are thermo-hydro-mechanical model (THM) (Gawin & Schre-

fler 1996; Bai & Abousleiman 1997), thermo-hydro-chemo-mechanical model (THCM)

(Kolditz et al. 2012) and thermo-electro-mechanical model (TEM) (Liew et al. 2003).

Recently, scientists even try to establish a more complete and complex thermo-hydro-

chemo-bio-magneto-electro-mechanical coupled model to describe the transfer mechanism

in porous media. However, the temperature field must be introduced and the temperature-

induced behaviour are of great interest to be concerned with in all the upper mentioned

models.
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Figure 1.2: Geological cross-section for radioactive waste repository in the Grimsel area

(Alonso et al. 2005)

1.2 Scope and objectives

The study mainly focuses on the analytical and numerical investigation of a THM cou-

pled model in saturated porous media and the corresponding engineering applications.

The effect of coupled flow (thermo-osmosis) on the THM coupled saturated porous me-

dia fulfilling local thermal non-equilibrium condition (LTNE), is investigated first. For

the partially decoupled thermoelastic model, the multilayered thermoelastic half space

with application to a repository for heat-emitting high-level nuclear waste in a geological

formation is studied. The temperature field is important for both of the up-mentioned

problems, and thus we will investigate the heat transfer mechanism considering a particu-

lar application in geothermal energy exploitation. The major objective of this study is to

investigate the heat transfer mechanism and the temperature-induced behaviour in porous

media with application in geotechnics. In order to achieve this objective, the following

three problems will be studied and finished step by step:

• Modelling. Based on the in-situ model, a suitable geometrical approximation to real

geotechnical project will be established with the relevant governing equations and

initial and boundary conditions.

• Theoretical study. The most important task is to get the analytical solutions for

all the variable fields, i.e., temperature field, deformation field, stress field, pore

pressure field, etc. The analytical study could enhance our understanding on the

heat transfer mechanism and temperature-induced behaviour in porous media with

particular application in geotechnics.
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• Numerical study. As case studies, series of numerical simulations, based on the upper

analytical solutions, will be implemented out with specified geophysical parameters

to investigate the heat transfer and temperature-induced behaviour.

The objectives of this study can be summarized as:

• First, a critical literature review on the theoretical and numerical study on the

coupled THM behaviour is presented. A coupled THM model in saturated porous

media with the consideration of thermo-osmosis effect and the thermal local non-

equilibrium condition is established. The analytical solutions of temperature, pore

pressure, stress, displacement and fluid flux are obtained. Numerical simulations are

carried out to investigate the coupled effects of thermo-osmosis in saturated porous

media. The effects of LTNE on temperature, pore pressure, stress, displacement

and fluid flux are also discussed.

• Next, the thermoelasticity theory will be adopted to establish a multilayered ther-

moelastic geophysical model with containing sources and surface loads. The analyt-

ical solutions for temperature, stress and displacement are obtained with the help

of propagator matrix method. With a specified kind of clay material which is used

as the buffer in radioactive waste repository, numerical simulations are performed

to investigate the temperature distribution and the temperature-induced behaviour

under a decaying heat source.

• In order to better reveal the heat transfer mechanism in geotechnics, we establish

a geotechnical model of a single vertical borehole heat exchanger system. The

analytical solution of the heat transfer problem in the system of semi-infinite ground

with a finite line heat exchange source are derived. The model parameter study for

the temperature distribution in the ground and in the water for long operation time

is performed.

1.3 Organization of the dissertation

This dissertation consists of seven chapters, of which the content can be briefly summa-

rized as:

• Chapter 1: Introduce the background, the scope and the objective and the organi-

zation of this dissertation.
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• Chapter 2: Present a literature overview on the applications of coupled THM model

and the decoupled thermoelastic model. The previous theoretical works on the

analytical solutions for the coupled THM model are discussed.

• Chapter 3: The governing equations of the initial boundary value problem (IBVP)

for heat transfer, fluid flow and constitutive mechanical relation are presented and

discussed.

• Chapter 4: Present an analytical study on thermo-osmosis effect in THM coupled

saturated porous medium which fulfills the local thermal non-equilibrium condition.

• Chapter 5: A multilayered thermoelastic half space is established and analytically

and numerically investigated with an application to nuclear waste disposal in a

geological formation.

• Chapter 6: An analytical study on heat transfer in a geothermal heat-pump system

is presented.

• Chapter 7: Based on the works in this study, conclusions are drawn and the works

in the next step are suggested.





2 State of the art

2.1 Application of a coupled THM models in

geomechanics

As the development of multi-discipline approach, a lot of complicated coupled processes

become more important and attractive. One of the most important coupled processes is

a coupled thermo-hydro-mechanical (THM) process which gets increasing attentions in

engineering. The non-isothermal condition is common in some engineering circumstances,

such as radioactive waste repository, geothermal energy exploit, energy storage in deep

ground, petroleum extraction and so on. The coupling effects among heat flow, pore

fluid flow and solid skeleton deformation under these circumstances are actually very

significant. The traditional models, just like the elastic, poroelastic (Biot 1956; Biot &

Willis 1957) or thermoelastic (Biot 1955; Nowacki 1962) models cannot precisely describe

these coupling effect between the deformation, hydrology and temperature fields, thus

the THM coupling theory is presented and widely used to analyze the coupling effect in

saturated/unsaturated porous media.

A very important application of coupled THM model in geotechnics is the assessment of ra-

dioactive waste disposal (Yang, Guerlebeck & Schanz 2014) both in saturated/unsaturated

soil or rock where temperature field plays an important role in the coupling behaviour.

Booker & Savvidou (1985) established a three-dimensional time-dependent fluid satu-

rated thermoporoelastic model with a containing point heat source and analytically in-

vestigated the effect of temperature field on the responses of stress and pore pressure.

Kurashige (1989) extended Rice-Cleary theory (Rice & Cleary 1976) and established a

one-dimensional model of a spherical cavity in saturated infinite thermoporoelastic media

and investigated the effect of heat transportation due to fluid flow on the temperature

distribution and thermal stresses in rock. Giraud & Rousset (1995) developed a solution

scheme for an one-dimensional consolidation problem of a saturated thermoporoelastic

medium and used analytical solutions to treat a problem of radioactive waste disposal in

7
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compressible clay. The numerical results showed that coupling effects among thermal, hy-

draulic and mechanical behaviors are significant for porous media with low permeability

coefficient such as compressed clay. Thomas & Cleall (1999) discussed the development of

a coupled THM model considering the coupled flow of heat, moisture and air in expansive

unsaturated clays. Wu et al. (2004) proposed a THM constitutive model for unsaturated

soils considering thermal softening phenomenon and compared the numerical results by

means of the finite element method of the constitutive behaviour with the existing exper-

imental results. Francois et al. (2009) carried out finite element modelling of an in situ

thermal experiment to investigate the effect of temperature on the response of a candidate

host formation for radioactive waste disposal. Kodashima & Kurasbige (2009) presented a

saturated thermoporoelastic hollow sphere whose inner surface is exposed to burning gas

and outer surface is cooled by the fluid injection. They investigated the effect of heat ad-

vection due to active fluid injection on the reduction of temperature and thermal stresses

and got the conclusion that the active fluid pressurization and injection are effective in

suppressing the maximum thermal hoop stress at the outer surface and avoiding the oc-

currence of the excess compressional stress at the inner surface. Based on the coupled

THM theory (Giraud & Rousset 1995), Liu, Xie & Zheng (2010) presented a nonlinear

model for the thermohydroelastic dynamic (THED) response in saturated porous me-

dia and solved a problem of one-dimensional cylindrical cavity in homogeneous isotropic

poroelastic medium subjected to a time-dependent thermal/mechanical shock. They in-

vestigated the effects of Biot-Willis coefficient and thermo-osmosis on displacement and

compared the thermohydroelastic dynamic response with the simplified thermoelastic dy-

namic (TED) response as shown in Figure 2.13. Furthermore, they (Liu et al. 2009; Liu,

Xie & Ye 2010) investigated the thermohydroelastic and thermoelastic dynamic responses

of a two-dimensional saturated poroelastic media under a time-dependent non-torsional

thermal/mechanical source or time harmonic loads with the help of Legendre polynomials

and Fourier transform schemes.

Maghoul et al. (2010) derived analytical transient fundamental solutions for a three-

dimensional THM coupled unsaturated porous media, and discussed how to simplify the

solutions to investigate the responses in three special cases, i.e., steady-state thermo-

hydro-mechanical, steady-state hydro-mechanical and elastostatic cases. With the Bound-

ary Integral Method, Maghoul et al. (2011) extend their work to numerically investigate

the dynamic response in frequency domain for a two-dimensional THM coupled unsatu-

rated porous media. Rutqvist et al. (2001) presented the coupled THM model in saturated

and unsaturated geologic formations such as fractured rock and compared four finite ele-

ment codes including ROCMAS, THAMES, FRACON and AQCLAY for simulating such
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Figure 2.1: Variations of temperature and pore pressure with z (normal force).(Liu, Xie

& Zheng 2010)

coupled process. Chen, Zhou & Jing (2009) established a three-dimensional numerical

model with the help of the Galerkin finite element method to investigate a fully coupled

multiphase flow, thermal transport and stress/deformation in unsaturated porous me-

dia (as shown in Figure 2.2), with the consideration of six processes and their coupling,

i.e., stress-strain, fluid flow, gas flow, vapor flow, heat transport and porosity evolution

processes. Chen, Tan, Yu, Wu & Jia (2009) presented a fully coupled THM model in

unsaturated porous media considering of the effect of temperature on the dynamic viscos-

ity of the fluid and void ratio, the effect of thermo-osmosis, effects on fluid flow and the

influence of heat flow due to thermal convection, and numerically investigated the coupled

behavior of a tunnel in unsaturated argillite during excavation, ventilation and concrete

lining stages with FEM method. Sanchez et al. (2012) carried out a large-scale heating test

to study the THM behaviour of a clay barrier subjected to heating and hydration over a

long period of time. Kolditz et al. (2012) presented an open-source project OpenGeoSys as

shown in Figure 2.3 to simulate the thermo-hydro-mechanical-chemical (THMC) process

in porous media and showed the potential of THMC modelling in geotechnics and hydrol-

ogy, as well as geothermal energy extraction and storage. Gatmiri et al. (2010) derived the

fundamental solutions of two-dimensional non-isothermal unsaturated multiphase porous

media in frequency and time domains, and utilized these solutions to investigate three

limiting cases including the steady state thermo-hydro-mechanical response, steady-state

hydro-mechanical response and elastostatic response.

With the help of FEM (finite element method), FDM (finite difference method) and

Newton-Raphson method, Gawin & Schrefler (1996) established a THM coupled numer-

ical model regarding phase change phenomenen to simulate slow transient phenomenen
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Figure 2.2: Distributions of effective plastic strain and radial displacement (Chen, Zhou

& Jing 2009)

involving flow of heat, fluid and gas in unsaturated porous media. Schrefler et al. (2002)

presented a coupled THM model for normal high-performance concrete (HPC) and ultra-

high performance concrete (UHPC) structures subjected to heating, in which the concrete

is a multiphase material consisting of a solid phase (cement paste and aggregates), two

gaseous constituents (water vapour and dry air) and water in three forms (chemically

bound water, adsorbed water, capillary water). A series of experiments and numerical

simulations were carried out to investigate the temperature and gas pressure development

and hydro-thermal and mechanical performance of HPC and UHPC under high tempera-

ture. Jussila & Ruokolainen (2007) established a THM coupled numerical model with the

considerations of non-linear elastic strain and moisture swelling, and studied the coupled
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Figure 2.3: Mathematical framework for coupled THMC modeling (Kolditz et al. 2012)

effects in swelling compacted bentonite with FEM method. Nowak et al. (2011) used FEM

to investigate a three-dimensional simultaneous THM coupled model of two full scale in-

situ experiments aimed to the assess of the complex coupling behavior of engineered and

geologic barrier systems in possible nuclear waste repositories.

Although the fully THM coupled models are relatively more strict, the analytical solu-

tions for these models can rarely be obtained due to the mathematical difficulty especially

for the THM coupled models in unsaturated porous media. Thus, some other partially

decoupled models are still popular nowadays. For a one-dimensional consolidation prob-

lem, Bai & Abousleiman (1997) presented a fully coupled thermoporoelastic formulation

and discussed the general conditions where the coupling should be maintained, and where

a partial coupling or decoupling technique could be applied. One of the most popular

models is the thermoelasticity. It is widely used in the analysis of multilayered geological

structure.

Multilayered structures widely exist in nature and are closely relevant to different engi-

neering problems. For instance, the geological structure can be considered for simplicity

as multilayered half space due to the geological formation and sedimentary history as

shown in Figure 2.4. There are also various man-made materials or structures that can
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be regarded as multilayered structures for modelling applications in fields ranging from e.g.

civil, mechanical and biomechanical engineering to microelectronics and optics. Moreover,

parts of human and animal organs and tissues can be considered as stratified media.

Figure 2.4: The multilayered geological structure (Pan 1989b)

More often the multilayered structure is assumed to be composed of homogeneous parallel

layers. Several approaches exist to solve the static and dynamic problems for multilayered

structures (Yang et al. 2016). The most common numerical and semi-analytical methods

are the finite element method (FEM) and the boundary element method (BEM). It is

well accepted that BEM is more suited compared to FEM to cases where the domain of

interest is infinite.

As an alternative one can consider the finite layer method (FLM) Small & Booker (1984,

1986a) and its improved version – the exact stiffness matrix method Senjuntichai & Ra-

japakse (1995); Degrande et al. (1998), and the analytical layer-element method (ALEM)

Ai et al. (2015b). However, these methods require an assembling of a global propagator

matrix whose size is proportional to the number of layers n and thus the methods are be-

coming inefficient if the number n increases or the length of the layer is large Pan (1989b,

1997). One of the best method to treat problems related to processes in multilayered

structures is the propagator matrix method (PMM) (Singh 1970). PMM was first used
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by Thomson Thomson (1950) and further developed by Haskell (1953) and Gilbert &

Backus (1966) to solve problems in elastodynamics. The essential principle is to formu-

late the solution for a group of ordinary differential equations which are written in the

format of matrix as following:
d

dz
f = Mf (2.1)

where f is the variables array, M is a matrix containing the material parameters and the

relevant independent variables in a homogeneous layer. The corresponding solution is

then:

f(z) = eM(z−z∗)f(z∗) = Pz
z∗f(z

∗) (2.2)

where the matrix Pz
z∗ is called propagator because it propagates the solutions from z∗

to z. With the above iterative relation we can get the general solution for multilayered

structure if all the variables at the interfaces are continuous:

f(z) = eM1(z−z1)f(z1) = eM1(z−z1) · eM2(z1−z2)f(z2)

= eM1(z−z1) · eM2(z1−z2) · · · eMn(zn−1−zn)f(zn) = Pz
znf(zn)

(2.3)

where Pz
zn is a global propagator matrix assembling by the independent propagator matrix

in each of the layer. In addition, the variables can also propagate in the opposite direction

with a suitable choice of global propagator matrix expressed as:

f(zn) = Pzn
z f(z) (2.4)

where Pzn
z = [Pz

zn ]−1.

The method successfully overcomes the difficulty in FLM for large n, and has the advan-

tage of high computational efficiency. Although PMM is superior to the previous methods,

the solutions were reported to be numerically unstable in the far evanescent regime for

high frequency and large layer thickness (Kennett 1974, 2009; Wang 1999; Wang & Kuem-

pel 2003). To overcome such instability issues there were used the following modifications

of PMM – delta matrix method (Dunkin 1965), transmission and reflection matrix method

(TRM) (Kennett 1974) and the orthogonalization method (Wang 1999).

There are many authors presenting solutions of various problems involving stratified struc-

tures. For the pure elastic multilayered structures, Small & Booker (1984, 1986b) applied

the finite layer method and Fourier or Hankel transform technique to investigate the 2D

and 3D static problems for cases with strip, circular and rectangular surface loads, and

compared with the relevant analytical solutions as verification. With the same method,

Booker & Small (1985) studied the three-dimensional problem subjected to circular and

general loadings in multilayered viscoelastic soil. Singh & Garg (1985) investigated the
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Figure 2.5: Stresses on axis beneath uniform strip loading (Small & Booker 1984)

The two-dimensional static problem of a long displacement dislocation in a multilayered

half space with Thomson – Haskell matrix method. The analytical solution for the sur-

face displacements due to dip-slip and strike-slip faults of arbitrary dip are derived for the

plain strain and antiplane strain situations. Singh (1986) studied the three-dimensional

axisymmetric problem of static deformation in a multilayered half space subjected to sur-

face loads and derived the explicit expressions for the displacements and stresses due to a

vertical force and a torque. Pan (1989b,a) analytically studied the static deformations in

three-dimensional problems for multilayered elastic medium with general surface loads and

internal dislocation sources. Based on Singh’s (Singh 1970) theoretical work, Jovanovich

et al. (1974a,b) examined the effect of earth structure on earthquake displacement, strain

and tilt fields at the Earth’s surface due to point dislocation sources. Rundle (1980)

investigated a problems of static elastic-gravitational deformations in layered half space

due to various point sources. Zhu & Rivera (2002) studied elasto-dynamic and elasto-

static problems in multilayered half space with displacement-stress discontinuities. They

rederived the propagator matrices for both the dynamic and static cases and showed that

the dynamic propagator matrix and the solution can converge to their static counterparts

at near-zero frequency by using Jordan canonical forms of matrices.
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For poroelastic multilayered media, Senjuntichai & Rajapakse (1995) presented an anal-

ysis of a 3D quasi–static problem. For deriving the solution of the problem they applied

the stiffness matrix method that is an improvement of FLM. The stiffness matrix method

is also used to evaluate the dynamic response of multilayered medium to a time-harmonic

load including existing fluid source (Rajapakse & Senjuntichai 1995a). Degrande et al.

(1998) investigated the harmonic and transient wave propagation problem for porous

medium with different degrees of saturation solving the problem using the said exact

stiffness matrix method and numerically investigated effect of partial saturation and a

moving water table on harmonic and transient wave propagation. Wang & Fang (2003)

studied the non-axisymmetric Biot consolidation problem in saturated poroelastic me-

dia under three different drained and undrained boundary conditions using PMM. Lu &

Hanyga (2005) adopted TRM to investigate a 3D axisymmetric dynamic problem with

applied vertical point force with a fluid source in a point. Furthermore, Liu & Zhao

(2013) adopted PMM to analyze the dynamic response of poroelstic media and compared

the results with the solution obtained using FLM Senjuntichai & Rajapakse (1995). The

related numerical examples demonstrated PMM is more accurate and stable than FLM,

and is an alternative approach to conducting the dynamic analysis of multilayered poroe-

lastic media. Recently, Zheng et al. (2013a,b) studied the 3D dynamic problem defined

for a multilayered poroelastic half space under the action of an internal point force, fluid

injection and harmonic surface traction as shown in Figure 2.6. There they applied the

orthogonalization technique developed by Wang (1999)and a high-order adaptive inte-

gration method with continued fraction expansions to accelerate the convergence of the

truncated integral in numerical simulation. To validate the accuracy and efficiency of

this method a comparison is presented between the numerical results and the analytical

solution for a uniform poroelastic half space.

The next type of coupled field problems involving multilayered structures is that of ther-

moelasticity. Rundle (1982) studied the static and pseudo static nonisothermal deforma-

tion problems in multilayered elastic media with a heat source. Small & Booker (1986a)

considered a 2D axisymmetric problem for multilayered thermoelastic half space with a

heat source using FLM and applied their analytical solutions to treat a problem of nu-

clear waste depositary as shown in Figure 2.7. Pan (1990) developed a general analytical

method to investigate the problem of transient thermoelastic deformation in multilayered

half space subjected to general surface loads and internal sources with the help of PMM.

Wang & Ai (2015) introduced a new method – precise integration method (PIM) to in-

vestigate the thermo-elastic response with buried decaying heat sources in multilayered

materials. Furthermore, Haartsen & Pride (1997) numerically determined the wave prop-
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Figure 2.6: Depth profiles of vertical displacements for r = 1, h = 0 due to (a) a horizontal

point force and (b) a fluid injection point source (Zheng et al. 2013a)

agation in porous media as a solution to a coupled hydro-mechanical-electro-magnetical

problem for stratified porous medium with an embedded full-waveform electroseismic

point-source.

The next of the few available references are those of Small & Booker (1986a) as FLM

application example, of Ai et al. (2015b) as ALEM application example, of Wang & Ai

(2015) as PIM application example and of Rundle (1982) where conventional propagator

matrix method was used. On the other hand, there are sufficient references on thermoe-

lastic homogeneous models. However, it can be concluded that the studies on multilayered

structures mainly focus on the elastic and poroelastic models while the temperature field

is rarely taken into account.

For both THM coupled model and the parcially decoupled thermoelastic model, the tem-

perature filed all plays a very important role. Compared with the mechanical load, the

temperature load/source sometimes worth more our attention just like the investigation

of the nuclear waste disposal. The study in the heat transfer mechanism is quite impor-

tant which could benefit our understanding about the temperature-related engineering,

for instance the geothermal energy exploitation.

The geothermal energy generates from the original formation of the Earth and the ra-

dioactive decay of materials. It is roughly estimated that the temperature of the Earth’s

core is between 30000C to 50000C. The temperatures in excess of 5000C can be discovered

in the Earth’s crust just a few thousand meters below the surface. The geothermal gradi-



2.1 Application of a coupled THM models in geomechanics 17

Figure 2.7: Distribution of temperature, displacement and stress (Small & Booker 1986a)

ent, which is the difference in temperature between the core of the Earth and its surface,

drives a continuous conduction of geothermal energy in the form of heat from the core

to the surface. There is a long history to utilize the geothermal energy. Since Paleolithic

times people have used hot spring for bathing and heating. Nowadays, the utilization of

geothermal energy gets a significant growth. It is reported that (Lund & Boyd 2015), the

total installed capacity for geothermal utilization worldwide is 70,329 MWt up to the end

of 2014 with an annual growth rate of 7.7%. The total annual energy use is 587,786 TJ

(163,287 GWh) with an annual growth rate of 6.8% as shown in Figures 2.8 and 2.9.

Geothermal heat pumps (GHPs) which are a highly efficient, renewable and environmental

friendly energy technology are used for space heating and cooling and other applications.
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Figure 2.8: The installed direct-use geothermal capacity and annual utilization from 1995

to 2015 (Lund & Boyd 2015)

Geothermal heat pump can utilize the ground as heat source or heat sink and transfer

heat for space heating during winter, and transfer heat out of the space for cooling during

summer. Bose et al. (1985) generally presented the design manual for ground-coupled

heat pump in details. A geothermal heat pump consists of three fundamental elements in

general: an earth connection system, a heat pump system and a heat distribution system

as shown in Figure 2.10.

• Earth connection system. The earth connection system usually contains a series of

closed and buried loop of pipes, horizontally or vertically, which we call closed-loop

system. The fluid circulates through these pipes, allowing heat but not fluid itself to

be transferred between building and the ground. The circulating fluid is generally

water or a water/antifreeze mixture. Less commonly, the earth connection system

can also be configured with an open loop of pipes connecting to a surface water

body or an aquifer that directly transfers water between the heat exchanger and

water source. However, this open-loop system is politically forbidden for the sake

of environmental protection.

• Heat pump. This element contains three main parts:

– The evaporator, which takes the heat from the water in the ground loop.
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Figure 2.9: Comparison of worldwide direct-use geothermal energy in TJ/yr from 1995,

2000, 2005, 2010 and 2015 (Lund & Boyd 2015)

– The compressor, which moves the refrigerant round the heat pump and com-

presses the gaseous refrigerant to the temperature needed for the heat distri-

bution circuit.

– The condenser, which gives up heat to a hot water tank to feed the distribution

system.

• Heat distribution system, consisting of under floor heating or radiators for space

heating and in some cases water storage for hot water supply.

In the past, a lot of theoretical and experimental works were carried out to investigate the

heat transfer mechanism in this GHP system (Yang, Datcheva, Koenig & Schanz 2014).

For a classical GHP with vertically configured U-tube in deep borehole exchanger (BHE)

as shown in Figure 2.11, Ingersoll & Plass (1948) and Ingersoll et al. (1954) developed

Kelvin’s line-source theory and provided several novel analytical approaches to design the

heat exchanger system. The line-source approach approximates the deep borehole with the

U-tube as an infinite line with radial heat flow. A more accurate method is the cylinder-

source method developed by Carslaw & Jaeger (1947), which assumes the borehole as a

cylinder with a constant radial heat flux at the radius of the cylinder. However both of

these theories neglect the axial heat flow along depth and are only adequate for short
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Figure 2.10: Complete schematic description of the geothermal heat pump system (Pulat

et al. 2009)

duration operation from hours to months, ground temperature cannot reach a steady

state value for long duration operation. A finite line-source theory was then developed

by Eskilson (1987), which takes axial heat flow condition into consideration and can be

valid for both short or long duration operations.

Based on the study of thermal response of a borehole exchanger to a constant heat injec-

tion or extraction, the in-situ tests called thermal response tests (TRTs) are commonly

carried out to detect the thermal properties of the ground, grouting materials and the

heat exchanger. Eskilson & Claesson (1988) analytically investigated dimensioning rules

and the effects of stratification of the ground, climatic variations, geothermal gradient and
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Figure 2.11: Heat extraction using U-tube in deep borehole (Eskilson 1987)

groundwater filtration on the heat extraction step. They used TRTs to determine three

important parameters: average thermal conductivity in the ground, borehole thermal

resistance, and average undisturbed ground temperature. Eskilson & Claesson (1988) de-

signed a computational model with suitable choice of mesh to simulate a symmetry group

of boreholes based on the intricate superposition technique. Based on Eskilson’s (Eskilson

1987) theoretical work, Yavuzturk & Spitler (1999) developed non-dimensional short time-

step temperature response factors with an analytically validated two-dimensional transient

implicit finite volume model. Lamarche & Beauchamp (2007) introduced a modified ap-

proach of A- and B-integrals to evaluate Eskilson’s g-function for long duration analyses

of BHE system. Bandos et al. (2009) improved Eskilson’s g-function (Eskilson 1987) and

presented a new analytical formulae for asymptotic behavior of thermal response with

the consideration of surface temperature oscillations. They established an efficient model

to assess the TRTs data by improving the asymptotic expression of the mean borehole

temperature. Accounting for the thermal interference between the two legs of U-tube,

Diao et al. (2004) derived the explicit analytical solution of the finite line source in semi-

finite medium and then calculated of the thermal resistance both outside and inside the

borehole for long time steps. With the finite element technique, Al-Khoury et al. (2010)

established a three-dimensional time-dependent model to investigate the heat transfer in

a double U-tube BHE system buried in multilayered soil mass both for long- and short-
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duration operations. The effect of the grout thermal conductivity in relation to the fluid

flow rate is studied too. Zeng et al. (2003) established a quasi-three-dimensional model

and then derived analytical solutions of the fluid temperature and borehole resistance for

single and double U-tube BHE system with the consideration of fluid axial convective

heat. Diao et al. (2004) established a conduction-advection model to estimate the impact

of groundwater flow on performance of U-tube BHE system. Their numerical results as

shown in Figure 2.12 demonstrated that water advection in the porous media could sig-

nificantly change the conductive temperature distribution, and the hydraulic and thermal

properties of soils and rocks can also influence the advection heat transfer. Similar study

was also implemented by Fan et al. (2007, 2008).

Figure 2.12: Temperature responses to the line-source heating with and without water

advection (Diao et al. 2004)

For a horizontally configured stretch, the heat transfer mechanism is different from the

one for vertically buried BHE system, because such stretch is always buried at the super-

ficial ground and the temperature factors just like sunshine hour and precipitation will

influence the heat transfer process significantly. Chung et al. (1999) established a two-

dimensional model to study the problem of steady state heat transfer from a constant

wall temperature circular pipe with a plane surface exposed to a fluid flow by means of

alternating direction implicit (ADI) finite difference method. Demir et al. (2009) used

ADI finite difference method to investigate the effect of boundary condition, e.g., Mete-

orological soil, weather temperatures and solar radiation, on the thermal response of a

two-dimensional time-dependent model, and compared the numerical results with the ex-

perimental data. Esena, Inalli & Esen (2007); Esena, Inalli, Esen & Pihtili (2007) carried

out a series of experiments to investigate the temperature distribution in the vicinity of
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the horizontally stretched pipes and to determine the coefficient of performance (COP) of

the geothermal heat pump system. The experimental results were compared and agreed

well with a two-dimensional time-dependent numerical model by means of finite difference

method. Taking the heat and moisture transfer in the soil into account, Piechowski (1999)

introduced a new approach to simulate the horizontal type GHP with special attention

on the pipe-soil interface. With the effect of outdoor temperature on system capacities

and COP values with respect to outdoor air and mean soil temperatures, Pulat et al.

(2009) experimentally studied the performance of horizontal GHP with various system

parameters. The variations of circulating antifreeze solution temperatures, extracted and

rejected heat, super heat rate in evaporator and sub-cooling rate in condenser, total power

consumption and the COP values for both the entire system and heat pump unit were

obtained.

2.2 Analytical solutions for coupled THM model

The analytical solutions for the THM model can well reveal the mechanism of the coupled

behaviour in porous media, and can also be a benchmark for the numerical simulation.

Although not all the analytical solutions can be obtained for THM model, there are still a

lot of theoretical works with some meaningful analytical solutions published in the past.

2.2.1 Analytical solutions for coupled THM model in porous media

McTigue (1986) first presented a linear theory and a general solution scheme for saturated

thermoporoelastic media. The constitutive relation takes the compressibility and thermal

expansion of both the fluid and solid skeleton into account which reads:

σij = 2Gεij + λεkkδij − ξpδij −Kαθδij (2.5)

where σij is the total stress, εij is infinitesimal strain, p is pore pressure, θ is temperature

change, respectively, G, λ, ξ(= 1 − Ks
K

), K, Ks and α and are shear modulus, Lame pa-

rameter, Biot-Willis coefficient, bulk modulus, bulk modulus of solid skeleton and thermal

expansion coefficient, respectively. δ is Kronecker delta.

Booker & Savvidou (1985) developed an analytical solution for the consolidation problem

of 3D homogeneous cylinder under non-isothermal conditions. Booker & Savvidou (1985)

established a three-dimensional time-dependent fluid saturated THM model with a con-

taining point heat source and got the analytical solutions for displacement, pore pressure,
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stress and temperature by means of Laplace and Fourier transform. Rajapakse & Senjun-

tichai (1995b) studied the three-dimensional quasi-static response of a multilayered poroe-

lastic half-space with compressible constituents. Bai & Abousleiman (1997) discussed the

coupling theory and simplification method, and studied one dimensional consolidation

behaviour of soil column as a practical application. Giraud & Rousset (1995) obtained

the analytical solutions for the static response in one-dimensional semi-infinite multilay-

ered porous media with a point heat decaying point source. Giraud (1998) presented

the solutions for the behaviour of a two-layered porous space, which contains a deep low

permeability layer with decaying heating source and a superficial layer, to examine the

effects of contrasts of permeability, thermal conductivity and specific heat capacities be-

tween the two layers on the large-scale behaviour of the porous space. Zhang et al. (1999)

studied the consolidation problem of a thermoporoelastoplastic model and compared with

thermoporoelastic model. Vafai & Sheikh (2004) presented the exact mathematical solu-

tion for heat transfer in the models of parallel plate channel and circular duct based on

Brinkman’s theory. Kanj & Abousleiman (2005) established an unjacked hollow cylinder

with anisotropic materials subjected to non-isothermal conditions, and investigated the

thermal and material anisotropy effects on the quasi-static response of pore pressure and

stress. Ekbote & Abousleiman (2005) presented an anisotropic porochemothermoelastic

inclined borehole subjected to non-isothermal conditions, and studied the thermochem-

ical effects on pore pressure and stress. Liu (2010) studied the dynamic response of a

2D thermo-hydro-elastic model and compared with the thermoelastic model. However,

when soil and rock are subjected to rapid heating or cooling, the rate of heat transfer

between soil/rock and pore fluid may not be fast enough for the two phases to achieve

local thermal equilibrium (He & Jin 2011). The physical properties of soil and fluid are

independent, different from the mixture material. This phenomenon is even more obvi-

ous in heat insulation materials. Under this condition, the local thermal non-equilibrium

(LTNE) transfer theory is better than LTE transfer theory to describe the temperature

distributions. In this field, Nield (1998) investigated the forced convection processes in a

channel between parallel planes. Vafai & Alazmi (2002) investigated the effects of vari-

ant boundary conditions on constant wall heat flux under LTNE conditions. Nield &

Bejan (2006) published a book to describe the development of LTNE transfer theory in

details. He & Jin (2011) investigated the distributions of temperatures, pore pressure and

thermal stresses on an one-dimensional spherical model fulfilling LTNE condition and

also compared LTNE transfer theory with LTE transfer theory. For an one-dimensional

semi-infinite model, Liu, Xie & Zheng (2010) got the solutions of dynamic response under

mechanical/thermal shock in Laplace transform domain.
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Most of the analytical solutions are for the saturated porous media, while numerical

approximations with the help of FEM, FVM, DEM,FDM and so on are obtained for

the unsaturated porous media. However, there are still some limited analytical solutions

following some necessary simplifications are obtained. For the study of unsaturated porous

media, the relevant constitutive equation should be changed with the introduction of gas

pressure written as (Maghoul et al. 2010):

σ − pgI = DE− F (pg − pw)I− CθI (2.6)

where pg and pw are pore gas and water pressure, respectively, I is identity tensor, and

the definitions of D, F and C can be found in their article. Gatmiri & Jabbari (2005a,b)

derived the fundamental solution for the nonlinear hydro-mechanical governing differential

equations for static and quasi-static porous media for both two and three-dimensional

problems. Jabbari & Gatmiri (2007) derived the thermoporoelastic fundamental solution

for the nonlinear governing differential equations for static and for both two and three-

dimensional problems. Maghoul et al. (2010) derived analytical transient fundamental

solutions for a three-dimensional THM coupled unsaturated porous media by applying

the Laplace transform and using the Kupradze method.

2.2.2 Analytical solutions for multilayered thermoelastic model

If the hydraulic field is decoupled from the THM model, that means the porous media is

dry, so we can get the classic Duhamel-Neumann relation which can be written as follows

σij = 2Gεij + λεkkδij −Kαθδij (2.7)

More often the multilayered thermoelastic structure is assumed to be composed of homo-

geneous parallel layers. Several approaches exist to solve the static and dynamic problems

for multilayered structures. The most common numerical and semi-analytical methods

are the finite element method (FEM) and the boundary element method (BEM). It is

well accepted that BEM is more suited compared to FEM to cases where the domain of

interest is infinite.

As an alternative one can consider the finite layer method (FLM) (Small & Booker 1984,

1986a) and its improved version – the exact stiffness matrix method (Senjuntichai &

Rajapakse 1995; Degrande et al. 1998), and the analytical layer-element method (ALEM)

(Ai et al. 2015b; Ai & Wang 2015; Ai et al. 2015a). However, both methods require an

assembling of a stiffness matrix whose size is proportional to the number of layers N and
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thus the methods are becoming inefficient if the number N is large (Pan 1989b, 1997).

One of the best methods to treat problems related to processes in multilayered structures

is the propagator matrix method (PMM) (Singh 1970). PMM was first used by Thomson

(1950) and further developed by Haskell (1953) and Gilbert & Backus (1966) to solve

problems in elastodynamics. The method successfully overcomes the difficulty in FLM

for large N , and has the advantage of high computational efficiency. Although PMM is

superior to the previous methods, the solutions were reported to be numerically unstable

in the far evanescent regime for high frequency and large layer thickness (Kennett 1974,

2009; Wang 1999; Wang & Kuempel 2003). To overcome such instability issues there

were used the following modifications of PMM – delta matrix method (Dunkin 1965),

transmission and reflection matrix method (TRM) (Kennett 1974), the orthogonalization

method (Wang 1999), the backward transfer matrix method (BTM) (Yue 1995) and the

method suggested by Ai et al. (2002).

There are many authors presenting solutions of various problems involving stratified struc-

tures. For the pure elastic multilayered structures, Small & Booker (1984, 1986b) applied

the finite layer method to investigate the 2D and 3D static problems for cases with strip,

circular and rectangular surface loads. Singh & Garg (1985), Pan (1989b), Singh (1970,

1986) and Pan (1989a) studied the static deformations in 2D and 3D problems for mul-

tilayered elastic medium with internal dislocation sources and surface loads. Based on

Singh (1970), Jovanovich et al. (1974a,b) and Rundle (1980) investigated problems of

static deformations in earth structure with point dislocation sources.

For poroelastic multilayered media, Senjuntichai & Rajapakse (1995) presented an anal-

ysis of a 3D quasi–static problem. For deriving the solution of the problem they applied

the stiffness matrix method that is an improvement of FLM. Degrande et al. (1998) in-

vestigated the wave propagation problem for porous medium with different degrees of

saturation solving the problem using the said exact stiffness matrix method.Wang &

Fang (2003) studied the non-axisymmetric Biot consolidation problem under three dif-

ferent boundary conditions using PMM. Recently, Zheng et al. (2013a) studied the 3D

axisymmetric problem defined for a multilayered poroelastic half space under the action of

an internal point force and fluid injection. There they applied the orthogonalization tech-

nique developed by Wang (1999). To validate the accuracy and efficiency of this method

a comparison is presented between the numerical results and the analytical solution for a

uniform poroelastic half space.

The next type of coupled field problems involving multilayered structures is that of ther-

moelasticity. Rundle (1982) studied the static and pseudo static nonisothermal deforma-
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tion problems in multilayered elastic media with a heat source. Small & Booker (1986a)

considered a 3D axisymmetric problem for multilayered thermoelastic half space with a

heat source. Pan (1990) developed a general analytical method to investigate the prob-

lem of transient thermoelastic deformation in multilayered half space subjected to surface

loads and internal sources with the help of PMM. However, there is a slight mistake in

Equation (16) for the expression of Xij which is further discussed in appendix C. Zhong

& Geng (2009) used transfer matrix method to study the thermal stresses in multilayered

asphalt pavement with temperature-dependent material parameters. Recently, Wang &

Ai (2015) and Ai et al. (2016) introduced a new method – precise integration method

(PIM) to investigate the thermo-elastic response with buried decaying heat sources in

multilayered materials.

The next of the few available references are those of Small & Booker (1986a) as FLM

application example, of Ai et al. (2015b); Ai & Wang (2015) and Ai et al. (2015a) as

ALEM application examples, of Wang & Ai (2015) and Ai et al. (2016) as PIM application

examples and of Rundle (1982) where conventional propagator matrix method was used.

On the other hand, there are sufficient references on thermoelastic homogeneous models.

However, it can be concluded that the studies on multilayered structures mainly focus on

the elastic and poroelastic models while the temperature field is rarely taken into account.

2.2.3 Analytical solutions for heat transfer in geotechnics

In the field of heat transfer, a lot of different theories are developed and applied to the

geothermal energy utilization. The first matured and well-known theory is Kelvin’s line-

source theory (Ingersoll & Plass 1948). Accordingly, the temperature response θ in the

ground due to a constant heat rate in polar coordinate reads:

θ(r, t)− θ0 =
ql

4πk

∫
r2

4κt

e−u

u
du (2.8)

where θ0 the initial temperature of the ground, ql the heating rate per length of the line

source, k and κ are the thermal conductivity and diffusivity of the ground.

Carslaw & Jaeger (1947) improved this theory and presented a cylinder-source method,

which assumes the borehole as a cylinder with a constant radial heat flux at the radius of

the cylinder. The temperature response in the ground can be presented in the cylindrical
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coordinate: 
∂2θ

∂r2
+

1

r

∂θ

∂r
=

1

κ

∂θ

∂t
rb < r <∞

−2πrbk
∂θ

∂r
= ql r = rb, t > 0

θ − θ0 = 0 r > rb, t = 0

(2.9)

where rb is the borehole radius.

Eskilson (1987) took axial heat flow condition into consideration and developed a finite

line-source theory which demonstrate to be valid for both short or long duration op-

erations. The basic governing equations of the temperature response in the ground in

cylindrical coordinates read:

∂2θ

∂r2
+

1

r

∂θ

∂r
+
∂2θ

∂z2
=

1

κ

∂θ

∂t

θ(r, 0, t) = T0

θ(r, z, 0) = T0

ql(t) =
1

H

∫ H

0

2πrk
∂θ

∂r
|r=rbdz

(2.10)

The final expression of the temperature response at the borehole wall to a unit step heat

pulse can be expressed with respect to a g-function as:

θb − θ0 = − ql
2πk

g(t/ts, rb/H) (2.11)

where ts = H2/9κ means the steady-state time. The g-function is used to describe

the thermal response factor of the borehole to a heat pulse and to estimate the three-

dimensional temperature distribution of a multiple borehole configuration which is closely

related with the thermal resistance R and could be calculated numerically. Moreover, two

asymptotic approximations for g-function were also presented by Eskilson (1987), to better

develop the computational code:

g(t/ts, rb/H) =


ln

(
H

2rb

)
+

1

2
ln

(
t

ts

)
5r2b/κ < t < ts

ln

(
H

2rb

)
t > ts

(2.12)

Based on the finite-line source theory, Zeng et al. (2002) gave the analytical solution for

temperature response in the ground which reads:

θ(r, z, t)− θ0 =
ql

4πk

∫ H

0

erfc

(√
r2 + (z − h)2

2
√
κt

)
√
r2 + (z − h)2

−
erfc

(√
r2 + (z + h)2

2
√
κt

)
√
r2 + (z + h)2

dh (2.13)
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where H is the depth, erfc() is complementary error function, the temperature at the

mid-borehole depth, i.e., T (r, 0.5H, t) is usually chosen as its representative temperature,

.

2.2.4 Analytical study for thermo-osmosis effect

Some special thermal-coupled effects like thermo-osmosis effect are also studied previ-

ously. Coupled flows, which consist of thermo-osmosis and thermo-diffusion, mean that

fluxes (e.g., water, solute and heat) are driven by non-conjugate thermodynamic forces

(Carnahan 1984). According to this definition, thermo-osmosis can be interpreted as fluid

flux driven by temperature gradient. Thermo-osmosis was firstly observed experimentally

and explained theoretically in Derjaguin & Sidorenkov (1941). Based on this definition,

the formula of fluid flow qf driven by pore pressure and temperature can be written as:

qf = −kh
µ
∇p− Sw∇θf (2.14)

where θf is fluid temperature, µ is the fluid viscosity, kh(= Kh/(ρfg)) is the intrinsic

permeability, Kh is the hydraulic conductivity, g is gravity acceleration, Sw is a phe-

nomenological coefficient associated with the influence of temperature gradient on the

fluid flux, and can be measured directly in the laboratory (Letey & Kemper 1969; Srivas-

tava & Avasthi 1975; Carnahan 1983). The assessment of the phenomenological coefficient

Sw needs to be specially discussed as it is one of the model parameters that account the

significance of the thermal osmosis in the overall process of the fluid transport. Dividing

the hydraulic term in the above equation by the thermo-osmosis term, at zero specific

discharge, implies (Rastogi et al. 1964):

− |∇p|
|∇θf |

=
Swµ

kh
= Γ (2.15)

A series of experimental and theoretical works have shown that the thermo-osmosis effect

makes a great contribution to fluid flux especially in these materials whose permeability

coefficients are relatively small. Srivastava & Avasthi (1975) showed that, in compacted

kaolinite subjected to temperature gradient of 200Cm−1, the water flux associated with

this effect can reach to 10−8ms−1. Carnahan (1984) showed that fluid flux in clay due

to this effect is significantly greater than that complying with Darcy’s law, the ratio of

these two fluxes can be as greater as three orders of magnitudes. Considerable attention

on this effect should be put in nuclear waste storage. Because the permeability coeffi-

cient of clay barriers for nuclear waste is very low, thermo-osmosis effect derived from
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large temperature gradient will generate high pore fluid flux, pore pressure and soil de-

formation (Hueckel & Pellegrini 1992), which could decrease the strength of clay barriers

and even gradually destroy the nuclear waste container. A lot of experiments are also

designed to determine the value of the phenomenological coefficients related with thermo-

osmosis (Letey & Kemper 1969; Srivastava & Avasthi 1975; McVay 1984). In terms of

theoretical works, Carnahan (1984), McTigue (1986) and Liu (2010) mentioned coupled

flows but neglected them in numerical simulation. Zhou et al. (1998) presented both the

analytical solutions and mixed finite element formulates of 1D thermoporoelastic column

with thermodynamically coupled flows. Ekbote & Abousleiman (2005) presented a cou-

pled porochemothermoelastic borehole and investigated the thermo-osmosis effect on the

distributions of pore pressure and effective stress. Ghassemi & Diek (2002) adopted the

thermoporoelasticity theory to derive the analytical solutions of pore pressure and stresses

around a borehole in saturated swelling shale, and extend their work to chemically active

rock to investigate the effect of both thermo- and chemical-osmosis on the stability of the

borehole under high temperature and high pressure circumstance. They demonstrated

that the stress and the pore pressure near the borehole are significantly changed due to

thermo-osmosis and suggested that depending on the type of the fluid and the porous

media thermal osmosis can cause increase in the inflow that yields a reduction of the

effective stress and the strength or can promote the outflow of the fluid from the rock

that leads to excessive dehydration.

Based on the physical molecular theory, Julio Goncalves and & Tremosa (2012) developed

a new mathematical expression for the thermo-osmotic permeability and investigated the

thermo-osmosis effect on the pore pressure and fluid flow in argillaceous media. Their

numerical results showed that the thermo-osmotic permeability can be estimated only

from surface-charge density, temperature, pore size and salinity, and the thermo-osmosis

effect will play a prominent role in compacted shale layer with a temperature gradient.

2.2.5 Analytical study for LTNE heat transfer

Due to the importance of temperature field to the coupled THM model, a lot of con-

tributions on the heat transfer mechanism is also of great interest. The Local Thermal

Non-equilibrium (LTNE) effect in heat transfer process, which implies the local temper-

ature of solid skeleton may not be the same with the temperature of pore fluid, becomes

attractive recently. Nield made a great contribution to the development in this field. Nield

& Bejan (2006) introduced the development of heat transfer fulfilling LTNE effect where
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Figure 2.13: Thermo-osmotic cell in the lab (Srivastava & Avasthi 1975)

two constitutive equations for heat conduction in porous media are adopted to describe

such process:
(1− φ)ρscs

∂θs
∂t

= (1− φ)∇ · (ks∇θs) + (1− φ)Qs + h(θf − θs)

φρfcf
∂θf
∂t

+ (ρfcf )qf · ∇θf = φ∇ · (kf∇θf ) + (1− φ)Qf + h(θs − θf )
(2.16)

where θs and θf are solid and fluid temperatures, ρs and ρf are densities of solid and

fluid phases, cs and cf are specific heat capacities of solid and fluid phases, ks and kf are

heat conductivities, φ is porosity, Qs and Qf are sources for solid and fluid phases, h is a

exchange heat transfer coefficient and can be determined by (Dixon & Cresswell 1979):
h = afsh

∗

afs = 6(1− φ)/dp
1

h∗
=

dp
Nufskf

+
dp
βks

(2.17)

The definitions of all coefficients can be found in their book (Nield & Bejan 2006). He

& Jin (2011) established a one-dimensional saturated thermoporoelastic media to inves-
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Figure 2.14: Effect of thermal osmosis on pore pressure and stress around the wellbore,

cw: cold to warm; wc: warm to cold (shale cooler than mud) (Ghassemi & Diek 2002)

tigated the effect of local thermal non-equilibrium on the responses of temperature, pore

pressure and thermal stresses, and compared the LTNE effect with LTE effect as shown

in Figure 2.15.

The previous analytical studies on THM coupled generally adopted a single energy con-

servation equation with the LTE condition, and the thermo-osmosis effect is not always

considered due to large value permeability. However, two energy conservation equation

fulfilling the LTNE condition can better reveal the heat transfer mechanism in porous

media, the thermo-osmosis effect may play an important role in the low-permeability

materials like the clay, shale and so on. It is worthy our effort to carefully establish a

more complete model with consideration of LTNE condition and thermo-osmosis effect

and numerically investigate the THM coupled behaviour in porous media which has a low

permeability.
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Figure 2.15: Normalized temperature and pore pressure distributions with radial direction

(He & Jin 2011)

In this study, we will introduce the thermoporoelasticity theory fulfilling LTNE condition

to investigate the quasi-static response of temperatures, pore pressure, stress, displace-

ment and fluid flux around a cylindrical borehole subjected to impact thermal and me-

chanical loadings in an infinite saturated poroelastic medium. The analytical solutions

for all variables will be derived first with the help of Laplace transform scheme. The

thermo-osmosis effect will be taken into account to investigate the coupling effect in a

typical clay. The difference between the LTNE and LTE heat transfer theories will also

be discussed.

Next, we will take temperature field into consideration and extend the application of the

generalized propagator matrix method to analyze of temperature-induced deformations

in multilayered thermoelastic media. First will be presented the governing equations to-

gether with boundary and initial conditions for a 3D formulation of the problem for the

static response of multilayered thermoelastic media subjected to general surface loads and

containing sources. Second, a set of vector surface harmonics will be introduced, followed

by application of PMM with the aid of continuity conditions to derive the general solution

for temperature, heat flow, displacements and stress. Moreover, the numerical instabil-

ity problem in the conventional PMM algorithm will be discussed and resolved. Next,

a numerical strategy of high-order adaptive Gaussian quadrature method with contin-

ued fraction expansions (Chave 1983) will be employed to approximate the integral–form

solution expressed in terms of semi-infinite Hankel-type integrals. Finally, the solution
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will be applied to treat the problem of embedded in the geological structure radioactive

waste repository where the radioactive waste is regarded as a decaying heat source. The

temperature-induced deformations, stresses and the temperature distribution are investi-

gated and also compared with relevant previous results. The influence of source shape on

the thermoelastic responses is also discussed.

Then, we will adopt the finite-line theory to investigate a vertical U-tube BHE system

with specified boundary and initial conditions. The explicit analytical solutions of tem-

perature responses both in the ground and in the fluid will be presented and the numerical

simulations will be implemented to study the temperature variations due to different bore-

hole radius and pumping rate. This work can benefit to optimize the design of the BHE

system and provide a fundamental support to increase the working efficiency of the BHE

system.

At last, a series of conclusions about the coupled THM behaviour fulfilling LTNE con-

ditions, the influence of thermo-osmosis effect, the principle of numerical optimization

for multilayered thermoelastic media and the heat transfer mechanism in the geothermal

energy exploitation are drawn. The further works on the n-dimensional dynamic response

of coupled THM model, the analytical/numerical study on unsaturated porous media are

introduced for further consideration.



3 Governing equations for IBVP

formulated

3.1 Introduction

There are sufficient theoretical works for the pure elastic and thermoelastic model in the

past. The analytical work on the heat transfer is also matured and widely applied in

various engineering fields. However, the theoretical work on coupled THM model is not

sufficient up to now. The analytical solutions for THM models can well reveal the mech-

anism of the coupled behaviour in porous media, and can also be a benchmark for the

numerical simulation. The existing solutions for coupled THM model generally have some

simplifications. For instance, the material parameters are assumed to be constant, the

deformation is infinitesimal, the temperature change is limited, the constitutive relation-

ship is linear and so on. Although not all the problems for the coupled THM model can

be formulated, there are still a lot of theoretical works with some meaningful analytical

solutions published in the past.

3.2 Heat transfer

Generally speaking, there are three fundamental modes of heat transfer: heat conduction,

heat convection and heat radiation. Based on Nield Bejan’s work (Nield & Bejan 2006),

the constitutive equations for heat transfer in porous media read:
(1− φ)ρscs

∂θs
∂t

= (1− φ)ks∇2θs + h(θf − θs) + (1− φ)Qs

φρfcf
∂θf
∂t

+ ρfcfqf∇θf = φkf∇2θf − h(θf − θs) + φQf

(3.1)

where the term h(θf − θs) reveals the exchange heat transfer between solid and fluid

phases. If we assume that θs = θf = θ, that implies the transfer process reaches the LTE

35
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state, the classic energy conservation equation can be obtained by combining the above

two equations (McTigue 1986):

(ρc)m
∂θ

∂t
+ ρfcfqf∇θ = k∇2θ +Q (3.2)

where (ρc)m = (1−φ)ρscs +φρfcf , k = (1−φ)ks +φkf and Q = (1−φ)Qs +φQf denote

the the overall heat capacity per unit volume, overall thermal conductivity, and overall

heat production per unit volume of the medium, and the terms in the equation represent

• ∂θ
∂t

: rate of change of temperature over time;

• ρfcfqf∇θ: heat convective transfer;

• k∇2θ: heat conduction transfer.

When taken the influence of deformation and fluid pressure on temperature field, the

more complex THM coupled equation should be adopted as (Liu, Xie & Zheng 2010):

(ρc)m
∂θ

∂t
+ ρfcfqf∇θ = θ0Kα

∂e

∂t
− θ0αfKfkh∇2p+ k∇2θ +Q (3.3)

where θ0 is the reference temperature, e(= trε) is the volumetric strain, αf is the linear

thermal expansion coefficient for fluid, Kf is the bulk modulus for fluid. For the different

model, different kinds of equations for heat flux qH is selected. The Fourier’s law is most

widely adopted equation for qH which reads:

qH = −k∇θ (3.4)

What should be pointed out is that, the above equation is only for the heat conduction, a

more complete equation with the considerations of heat convection and thermal-filtration

should be written as (Liu, Xie & Zheng 2010):

qH = −k∇θ + ρfqfcfθ − Sf∇p (3.5)

where Sf is a phenomenological coefficient associated with the influence of water pressure

gradient on the heat flux (thermal-filtration).

Before we investigate the heat transfer problem, it is necessary to state the boundary and

initial conditions clearly to make the problem manageable. The boundary condition is

defined upon the actual circumstance which will discuss in the following in details:

• If the boundary directly contacts with other objective with prescribed temperature,

the boundary condition can be easily defined as: θ = fθ where fθ is a constant or a

prescribed function;
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• If there is a prescribed heat flux, the boundary condition can be defined as: ∇θ = fq,

where fq can be zero, a constant or a prescribed function;

• The linear radiation boundary condition is given by ∇θ + hr(θ − fθ). The radia-

tion condition describes that the flux across the boundary is proportional to the

temperature difference between the boundary and the circumstance;

• If the boundary is just the interface of two media with different heat conductivities,

so the boundary condition can be defined as: k1∇θ1 = k2∇θ2;

• There still some other boundary types, like the non-linear heat transfer condition

which can be found in Carslaw & Jaeger (1947).

The initial condition is usually given by:

θ = fθ0 (3.6)

although fθ0 can be a function of the coordinate, that implies the objective has not a uni-

form temperature. In order to well manage the proble, we usually assume fθ0 =constant.

3.3 Fluid flow

In the field of porous media, the Darcy’s law is commonly used to describe the fluid flow

which is formulated by Henry Darcy based on the results of experiments (Darcy 1956),

and it reads:

qf = −kh
µ
∇p (3.7)

A more complete formulation for the dynamic case with the thermo-osmosis effect could

be expressed as (Chen, Tan, Yu, Wu & Jia 2009):

qf = −kh
µ

(∇p− ρfg)− Sw∇θ (3.8)

where Sw is a phenomenological coefficient associated with the influence of temperature

gradient on the fluid flux (thermo-osmosis) and it has a relationship with Sf known as

Sw = (θ + θ0)Sf or Sw = θ0Sf for small temperature change.

We usually define two typical kinds of boundary conditions for the fluid flow:

• If the boundary is free to the circumstance, we give p = 0 at the surface;

• If the boundary is impermeable or it is infinite, we usually give qf = 0.
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3.4 Constitutive mechanical relation

If the soil is linear elastic isotropic saturated porous media, and take the effect of defor-

mation on the balance of mass and heat, the constitutive relation of an isotropic linear

poroelastic media could be depicted in terms of the effective stress and temperature change

as (McTigue 1986):

σ′ij = 2Gεij +
2Gν

1− 2ν
εkkδij −Kαθδij (3.9)

where σ′ij is effective stress and σ′ij = σij + ξpδij. The dynamic equilibrium equation and

strain-displacement relation can be expressed as (Liu, Xie & Zheng 2010):

σij,j + bj = ρüi + ρf ẅi (3.10)

εij = (ui,j + uj,i)/2 (3.11)

where bj is body force, ui and wi are displacement of solid skeleton and displacement of

pore fluid with respect to solid skeleton. Combining Equations (6.9)–(6.11) can obtain

G∇2ui +
G

1− 2ν
uj,ji − ξp,i −Kαθ,i = ρüi + ρf ẅi (3.12)

The above equation can be reduced to the Navier equation for an idea elastic model as

G∇2ui +
G

1− 2ν
uj,ji = ρüi (3.13)

by neglecting the hydraulic and temperature fields from the THM coupled model.

Two typical boundary conditions are discussed here:

• If the boundary is free and subjected to prescribed loads, we give σ = fσ at the

surface where fσ is a prescribed mechanical load;

• If the boundary is fixed, we usually give u = 0;

• If it is a infinite model, so ∇u = 0 at infinity.

We commonly set the initial displacement and stress equal zero or constant for the pre-

stressing case. Although the initial pre-deformation and pre-stress may not be uniform

throughout the objective, we prefer to assume it as a uniformed value to make the problem

manageable.

The above equations for heat transfer, fluid flow and the constitutive relations together

with the initial and boundary conditions constitute the complete mathematical-physical

model. In order to get the analytical solutions, we usually make some simplifications, like

the material parameters are constant, the deformation is infinitesimal, the temperature

change is small and so on.



4 Thermo-Osmosis Effect in Coupled

THM Porous Medium

4.1 Introduction

Coupled processes like thermo-hydro-mechanical (THM) coupling widely exist in differ-

ent branches of engineering, such as geothermal energy extraction, nuclear engineering,

geotechnical engineering and so on. These circumstances will generate strong coupling

effects in heat flux, fluid flux and soil deformation. Coupled flows, which consists of

thermo-osmosis and thermo-diffusion, mean that fluxes (e.g., water, solute and heat) are

driven by non-conjugated thermodynamic forces (Carnahan 1984). According to this def-

inition, thermo-osmosis can be interpreted as fluid flux driven by a temperature gradient.

Both theoretical and experimental studies demonstrate that the thermo-osmosis effect

plays an important role in the response of low permeability materials.

On the other hand, temperature is one important coupling factor while different heat

transfer theories result in different temperature field. Traditional researches adopt the

local thermal equilibrium (LTE) transfer theory with the assumption that solid and fluid

temperatures are identical. In this case, the solid and fluid are blended together as a

new mixture, a group of average parameters are endowed to the mixture material as its

physical properties. However, the physical properties of soil and fluid are independent, dif-

ferent from the mixture material. Under this condition, the local thermal non-equilibrium

(LTNE) transfer theory is better than the LTE transfer theory to describe the temperature

distributions.

Contributions on thermal coupled process fulfilling LTNE conditions together with the

effect of thermo-osmosis are not so sufficient. And the applications of the local ther-

mal non-equilibrium transfer theory are mainly put in the field of heat transfer itself,

the thermal induced pore pressure, stress, deformation and so on are less discussed. In

this chapter, thermo-poroelasticity theory fulfilling local thermal non-equilibrium condi-
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tion with thermo-osmosis effect is presented in section 4.2 to investigate the quasi-static

response of fully saturated poroelastic media. A coefficient h is employed to describe

interface heat transfer between the solid and the fluid phases. For a cylindrical borehole

subjected to impact thermal and mechanical loadings in an infinite poroelastic medium,

the analytical solutions are derived in Laplace transform space in section 4.3. Section 4.4

displays the parameter study for a typical clay. The coupled effects of thermo-osmosis in

pore pressure, displacement, radial stress and fluid flux are investigated. The effects of

LTNE are also studied and compared with the relevant results fulfilling LTE condition in

this section. At last we obtain several conclusions in section 5 which are useful both in

theoretical study and practical application.

4.2 Governing equations of coupled THM model fulfilling

LTNE condition

4.2.1 Constitutive equations

The quasi-static equilibrium equations for saturated isotropic poroelastic medium based

on the framework of Biot theory can be expressed in terms of total stress σij, strain εij,

pore pressure p and solid phase temperature θs as follows (McTigue 1986):

σij = 2Gεij +
2Gν

1− 2ν
εkkδij − ξpδij −Kαθsδij (4.1)

where δij is the Kronecker’s delta, ξ(= 1−K/Ks) is the Biot-Willis coefficient, G is the

shear modulus, ν is the Poisson’s ratio, K is the drained bulk modulus of solid skeleton,

Ks is the drained bulk modulus of solid grain, α is the volumetric thermal expansion

coefficient of solid skeleton. Compared with the relevant equation from McTigue (1986),

θs is more accurate than the weighted average temperature θ to describe the contribution

of thermal expansion to total stress.

For the isotropic, homogeneous and linear elastic porous media, the equilibrium equations

and strain-displacement relations can be written as:

σij,j = 0 (4.2)

εij = (ui,j + uj,i)/2 (4.3)

where ui denotes the displacement. In addition, inertia terms and body force are neglected

here.
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Substituting Equation (4.1) into Equation (4.2) results in

2G
1− ν
1− 2ν

∇εkk − ξ∇p−Kα∇θs = 0 (4.4)

4.2.2 Fluid flow

Consider a saturated poroelastic solid element of volume V which consists of solid grain

of volume Vs and voids of volume Vf . The rates of changes of V , Vs and Vf with respect

to time satisfy the following relationships:

∂εkk
∂t

=
1

V

∂V

∂t
=

1

V

∂Vf
∂t

+
1

V

∂Vs
∂t

(4.5)

1

V

∂Vs
∂t

= (1− φ)αs
∂θs
∂t
− 1− φ

Ks

∂p

∂t
+

~m

3Ks

∂~σ

∂t
(4.6)

1

V

∂Vf
∂t

= −∇qf + φαf
∂θf
∂t
− φ

βf

∂p

∂t
(4.7)

where αs and αf are the volumetric thermal expansion coefficients of solid grain and fluid

respectively, βf is the bulk modulus of fluid, φ is the porosity, ~σ denotes the effective

stress vector, ~m is row vector defined as ~m = (1 1 1 0 0 0), and qf is fluid flux.

The three terms on the right hand side of Equation (4.6) represent the volume change of

solid grain due to the changes of solid temperature, pore fluid pressure and effective stress,

respectively. The three terms on the right hand side of Equation (4.7) represent the volume

change of fluid due to the volume of outflow fluid, the changes of fluid temperature and

pore fluid pressure, respectively. It should be noticed that, in Equations (4.6) and (4.7),

θs and θf are employed instead of θ to describe the contributions of thermal expansions

to volume change of solid and fluid elements, respectively.

Substituting Equations (4.6) and (4.7) into Equation (4.5) results in

∇qf = −∂εkk
∂t

+ φαf
∂θf
∂t

+ (1− φ)αs
∂θs
∂t
− (

φ

βf
+

1− φ
Ks

)
∂p

∂t
+

~m

3Ks

∂~σ

∂t
(4.8)

Here we take coupled flow phenomena into consideration, so the fluid flux is given by the

following equation:

qf = −(kh/µ)∇p− Sw∇θf (4.9)

where kh is the intrinsic permeability µ is fluid viscosity, γf is the specific gravity of fluid,

Sw is a phenomenological coefficient associated with influence of temperature gradient

on fluid flux, and can be measured directly in the laboratory in principle (Srivastava &
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Avasthi 1975; Carnahan 1984). The second term on the right side indicates that fluid

flux can be driven by fluid temperature gradient (instead of ∇θ), which is called thermo-

osmosis effect. If this term is neglected, Equation (4.9) can be reduced to Darcy’s law.

In addition, there is another coupled flow called thermo-diffusion or Soret flow, by which

solute will diffuse with the effect of temperature gradient. Soret flow is different from

Fickian flow induced by concentration gradient, and should be noticed when we study the

contaminant transport in underground water. But this effect is neglected here because

there is no chemical coupling effect in this study.

Substituting Equations (4.9) and (4.1) into Equation (4.8) yields

Kf∇2p+ Sw∇2θf = ξ
∂εkk
∂t
− f1

∂θf
∂t
− f2

∂θs
∂t

+ f3
∂p

∂t
(4.10)

where Kf = kh/µ, f1 = φαf , f2 = (1− φ)αs − αK
Ks
, f3 = φ

βf
+ 1−φ

Ks
. Without consideration

of compressibility of the constituents, that is Ks, βf →∞, ξ = 1 and f3 = 0.

4.2.3 Heat flow

Under the LTNE condition, the solid phase temperature and fluid phase temperature

are different both in transient and steady situations. The governing equations of heat

conduction can be expressed as (Nield, 2006; He, 2011)

(1− φ)ρscs
∂θs
∂t

= (1− φ)ks∇2θs + h(θf − θs) (4.11)

φρfcf
∂θf
∂t

= φkf∇2θf − h(θf − θs) (4.12)

where θf is the fluid temperature, ks and kf are heat conductivities of solid and fluid

respectively, ρs and ρf are the densities of solid and fluid, cs and cf are the specific heats

of solid and fluid respectively. h is the coefficient of solid-fluid interface heat transfer.

According to the correlations for a porous bed particle established by Dixon & Cresswell

(1979), h = afsh
∗
int, where afs is specific surface area, h∗ is a coefficient related with

particle diameter, Nusselt number and heat conductivities. The determination of value h

can be directly found by experiment (Grangeot et al. 1994; Polyaev 1996). The second

terms both on the right hand in Equations (4.11) and (4.12) represent the integral heat

transfer between solid and fluid phases.
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Figure 4.1: Cylindrical borehole in an infinite saturated poroelastic medium

4.3 Solutions for cylindrical borehole in an infinite

saturated poroelastic medium

4.3.1 Mathematical model

In this section, an infinite homogeneous, isotropic thermal poroelastic medium with a

cylindrical hole subjected to axisymmetric boundary pressure and temperature, as shown

in Figure 4.1, is considered. Analytical solutions of temperature, pore pressure, stress,

displacement and fluid flux are derived in Laplace transform space. The LTNE effects are

also discussed in detail. In order to solve the problem, the inner boundary of the cylindrical

hole is assumed to be permeable and subjected to impact thermal and mechanical loadings.

4.3.2 Boundary conditions

The boundary conditions for this model are

θs(r, t)|r=a = θf (r, t)|r=a = θ0H(t),

p(r, t)|r=a = p0H(t),

∂θs(r, t)

∂t
|r→∞ =

∂θf (r, t)

∂t
|r→∞ = 0, (4.13)
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∂p(r, t)

∂t
|r→∞ =

∂σr(r, t)

∂t
|r→∞ = 0

where θ0 and p0 are constant, H(t) is the Heaviside step function.

4.3.3 Initial conditions

The initial conditions can be expressed as

θs(r, t)|t=0 = θf (r, t)|t=0 = 0,

p(r, t)|t=0 = 0, σr(r, t)|t=0 = 0, (4.14)

u(r, t)|t=0 = 0

4.3.4 Analytical solutions

The Laplace transform can be utilized, which is defined by

f̂(s) =

∞∫
0

e−stf(t)dt

f(t) =

c+∞∫
c−i∞

estf̂(s)ds (4.15)

where f̂(s) is called the transform of the original function f(t), s is a complex variable

with real part c, e−st is called the kernel of the transformation. A sufficient condition

for the existence of the integral is that f(t) is integrable on [0, +∞] and that f(t) is of

exponential order. The second formula in Equation (4.15) defines the inverse transform.

Application of Laplace transform to Equations (4.4), (4.10), (4.11) and (4.12) with initial

conditions (4.14) results in

2G
1− ν
1− 2ν

∇ε̂kk − ξ∇p̂−Kα∇θ̂s = 0 (4.16)

kh∇2p̂+ Sw∇2θ̂f = ξsε̂kk − f1sθ̂f − f2sθ̂s + f3sp̂ (4.17)

(1− φ)ρscssθ̂s = (1− φ)ks∇2θ̂s + h(θ̂f − θ̂s) (4.18)

φρfcfsθ̂f = φkf∇2θ̂f − h(θ̂f − θ̂s) (4.19)
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The transformed temperatures can be derived by Equations (4.18) and (4.19) as follows

θ̂s(r, s) = A1(s)
K0(r

√
λ1)

K0(a
√
λ1)
− A2(s)

K0(r
√
λ2)

K0(a
√
λ2)

(4.20)

θ̂f (r, s) = A3(s)
K0(r

√
λ1)

K0(a
√
λ1)
− A4(s)

K0(r
√
λ2)

K0(a
√
λ2)

(4.21)

where Ki()(i ∈ R)is the second kind modified Bessel function of i-th order or MacDonald

function, and

λ1,2 = [b1s+ b2 ±
√
b3s2 + b4s+ b22]/κs,

A1(s) =
θ0(s− κsλ2)
sκs(λ1 − λ2)

, A2(s) =
θ0(s− κsλ1)
sκs(λ1 − λ2)

,

A3(s) =
θ0(a1s/a2 − κsλ2)
sκs(λ1 − λ2)

, A4(s) =
θ0(a1s/a2 − κsλ1)
sκs(λ1 − λ2)

in which

b1 =
1

2
(1 +

a1
a2

), b2 =
h

2
(1 +

1

a2
), b3 =

1

4
(1− a1

a2
)2, b4 =

h

2
(1− 1

a2
)(1− a1

a2
),

κs =
ks
ρscs

, h =
h

(1− φ)ρscs
, a1 =

φρfcf
(1− φ)ρscs

, a2 =
φkf

(1− φ)ks

where κs and the latter κf are the thermal diffusivities of solid and fluid phases.

Integrating Equation (4.16) yields

ε̂kk =
1

2G

1− 2ν

1− ν
(ξp̂+Kαθ̂s + d1lnr + d2) (4.22)

where d1 and d2 are integral constants and can be determined by boundary conditions.

Substituting Equation (4.22) into Equation (4.17) results in

∇2p̂− g1sp̂ = −g2∇2θ̂f − g3sθ̂f + g4sθ̂s + g5s(d1Inr + d2) (4.23)

where

g1 = (
1

2G

1− 2ν

1− ν
ξ2 + f3)/kh, g2 =

Sw
kh
, g3 =

f1
kh
,

g4 = (
1

2G

1− 2ν

1− ν
Kαξ − f2)/kh, g5 =

1

2G

1− 2ν

1− ν
ξ

kh

Using Equations (4.20), (4.21) and boundary conditions (4.13) gives the transformed pore

pressure

p̂(r, s) = B1(s)
K0(r

√
g1s)

K0(a
√
g1s)

+B2(s)
K0(r

√
λ1)

K0(a
√
λ1)

+B3(s)
K0(r

√
λ2)

K0(a
√
λ2)

(4.24)
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where

B1(s) = −B2(s)−B3(s),

B2(s) = −[g2A3(s)λ1 + g3A3(s)s− g4A1(s)s]/(λ1 − g1s),

B3(s) = [g2A4(s)λ2 + g3A4(s)s− g4A2(s)s]/(λ2 − g1s)

The transformed bulk strain can be obtained by substituting Equations (4.24), (4.20)

and (4.21) into Equation (4.22) as follows

ε̂kk(r, s) =
1

2G

1− 2ν

1− ν
{ξB1(s)

K0(r
√
g1s)

K0(a
√
g1s)

+ [ξB2(s) +KαA1(s)]
K0(r

√
λ1)

K0(a
√
λ1)

+ [ξB3(s)−KαA2(s)]
K0(r

√
λ2)

K0(a
√
λ2)
}

(4.25)

Here a potential function ψ(r, s) is introduced which satisfies

ûr(r, s) =
∂ψ(r, s)

∂r
(4.26)

So we can get the following equation

ε̂kk(r, s) =
∂û

∂r
+
û

r
=
∂2ψ

∂r2
+
∂ψ

r∂r
= ∇2ψ (4.27)

and dealing with the ordinary differential Equation (4.27) can get the variable ψ(r, s),

then substitute ψ(r, s) into Equation (4.26). The transformed radial displacement can

thus be obtained as

ûr(r, s) =− 1

2G

1− 2ν

1− ν
{ξB1(s)√

g1s

K1(r
√
g1s)− (a/r)K1(a

√
g1s)

K0(a
√
g1s)

+
ξB2(s) +KαA1(s)√

λ1

K1(r
√
λ1)− (a/r)K1(a

√
λ1)

K0(a
√
λ1)

+
ξB3(s)−KαA2(s)√

λ2

K1(r
√
λ2)− (a/r)K1(a

√
λ2)

K0(a
√
λ2)

}+
1

2G

a2

r

p0
s

(4.28)

The transformed radial stress and fluid flux can also be obtained by Equations (4.1), (4.9),

and (4.20), (4.21), (4.24) and (4.28) as follows:

σ̂r(r, s) = −2G

r
ûr(r, s) (4.29)

q̂f (r, s) =khB1(s)
√
g1s

K1(r
√
g1s)

K0(a
√
g1s)

+ [khB2(s) + SwA3(s)]
√
λ1
K1(r

√
λ1)

K0(a
√
λ1)

+ [khB3(s)− SwA4(s)]
√
λ2
K1(r

√
λ2)

K0(a
√
λ2)

(4.30)
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Based on the LTE transfer theory which assumes that θs = θf = θ, the transformed

temperature can be expressed as

θ̂(r, s) =
θ0
s

K0(r
√
s/κ)

K0(a
√
s/κ)

(4.31)

where κ = k/ρc and k = (1 − φ)ks + φkf , ρc = (1 − φ)ρscs + φρfcf . The above so-

lution can also be derived by combining Equations (4.11) and (4.12). Compared with

Equations (4.20) and (4.21), the above temperature can be approximately regarded as

an average temperature or a limit case. If h tends to infinity, the interface heat transfer

between the two phases is sufficient enough to make the two temperatures almost equiv-

alent. However the value h can not be so large in reality, and even very small under

some circumstances, e.g., transfer in heat insulation materials. Its value is usually in the

range 10 − 1000W/(m3K) (Nield & Bejan 2006). Furthermore, the assumption θs = θf

will deduce a1 = a2 or κs = κf , that implies the LTE transfer theory can be adopted

if the two thermal diffusivity parameters of solid and fluid phases are identical. With

Equation (4.31) we can get the relevant analytical solutions of pore pressure, bulk strain,

radial displacement, radial stress and fluid flux by Laplace transform as follows

p̂e(r, s) = B0(s)[
K0(r

√
g1s)

K0(a
√
g1s)

−
K0(r

√
s/κ)

K0(a
√
s/κ)

] (4.32)

ûer(r, s) =− 1

2G

1− 2ν

1− ν
{ξB0(s)√

g1s

K1(r
√
g1s)− (a/r)K1(a

√
g1s)

K0(a
√
g1s)

+
−ξB0(s) +Kαθ0/s√

s/κ

K1(r
√
s/κ)− (a/r)K1(a

√
s/κ)

K0(a
√
s/κ)

}

+
1

2G

a2

r

p0
s

(4.33)

σ̂er(r, s) = −2G

r
ûer(r, s) (4.34)

q̂ef (r, s) =khB0(s)
√
g1s

K1(r
√
g1s)

K0(a
√
g1s)

+ [−khB0(s) + Swθ0/s]
√
s/κ

K1(r
√
λ1)

K0(a
√
λ1)

(4.35)

where f̂e(r, s) represents the solution fulfilling LTE condition, B0(s) = g2+κg3−κg4
1−κg1

θ0
s

.

4.4 Parameter study

Because of the difficulty of Laplace transform inversion towards complex analytical solu-

tions, numerous methods have been utilized for the numerical evaluation. In this section,
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a numerical inversion method based on a Fourier series expansion presented by Durbin

(1974) and developed by Honig & Hirdes (1984) is adopted to obtain the approximate

solutions of Equations (4.20), (4.21), (4.24), (4.25), (4.28)- (4.30) and (4.32) - (4.35).

Durbin’s formula can be written as follows:

f(t) =
2est

t0
[−1

2
Re{f̂(s)}+

N∑
n=0

(<{f(s+ in
2π

t0
)} cosn

2π

t0
t−={f(s+ in

2π

t0
)} sinn

2π

t0
t)]

(4.36)

where t0 is a parameter, the numerical results are valid only for t ≤ t0/2. The error is

essentially bounded by e−st0 , so suitable choice of st0 is important for the accuracy of the

results. It is reported (Durbin 1974) that, st0 = 5 to 10 and N ranging from 50 to 5000

gave good results. The parameters in Equation (4.36) are defined as t0 = 20, s = 0.25

and N = 500 in this paper.

Table 4.1 lists the material properties of a typical clay (He & Jin 2011). The radius

of the cylindrical cavity is taken as a = 0.5m, initial temperature is θa = 200C. For

the purpose to investigate the influence of temperature fields on the thermo-poroelastic

response, the boundary is assumed to be drained and stress free, subjected to an impact

thermal loading by taking θ0 = 500C and p0 = 0. In addition, all variables are normalized

by pa(= 100kPa), a, kh and θ0, respectively.

In parameter study, thermo-osmosis effects on pore pressure, radial stress, displacement

and fluid flux, are investigated. LTNE effect is also studied by comparing the results

fulfilling LTNE condition with those fulfilling LTE condition.

Figure 4.2a shows the thermally induced pore pressures (normalized by pa)along radius

(normalized by a) at time t = 20 hour. Here positive sign means compressive pressure.

Due to heating, both solid skeleton and pore fluid will expand. But the expansion value of

fluid is much larger than that of solid because the volumetric thermal expansion coefficient

αf (= 3×10−4/0C) of fluid is larger than αs(= 3×10−6/0C). This makes the pore pressure

initially generates near the inner boundary and increases along radius. In addition the

pore pressure at r/a = 1 is equal to zero because it is permeable on the inner boundary.

As time progresses, the process of drainage occurs and then leads to the dissipation of

pore pressure gradually as shown in Figure 4.2b. However, the dissipation procedure will

last longer and the peak value of pore pressure will be larger due to lower permeability

or thermo-osmosis effect. Comparisons with the two curves in each figure indicate that,

thermo-osmosis has substantial influence on pore pressure. The results with this effect

are always larger than these without this effect, especially on the peak value. That’s

because the permeability coefficient for the typical clay is relatively small compared with
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Table 4.1: Material parameters (He & Jin 2011)

Parameter Value Parameter Value

φ: [-] 0.375 α: 1/0C 3×10−6

G: Pa 1.2×106 αs: 1/0C 3×10−6

ν: [-] 0.2 αf : 1/0C 3×10−4

K: Pa 1.6×106 ks: W/m0C 3.29

ρs: kg/m3 2610 kf : W/m0C 0.582

ρf : kg/m3 1000 hint: W/m20C 10

Kf : m/s 5×10−10 cs: J/kg0C 937

Sw: m2/s0C 2.7×10−10 cf : 1/0C 4180

ξ: [-] 1.0

the ratio g2 = Sw/Kf . The terms B2(s), B3(s) related with the ratio in Equation (4.24)

will significantly influence the result of pore pressure in some extent. Furthermore, for

many other materials with large permeability coefficient, the influence of thermo-osmosis

on pore pressure is slight due to small ratio g2, thus the thermo-osmosis effect can be

neglected in this case.

Figures 4.3a and 4.3b show the thermally induced displacements (normalized by a ×
10−3) along radius at time t = 20 hour, and with time at r/a = 1.5, respectively. The

phenomenon that, displacements increase first along radius and then decrease, indicates

that clay expands due to heating at the inner boundary. As time progresses, it will

gradually shrink. Because as the process of drainage continues, pore pressure will decrease,

the loss of pore fluid will result in the decrease of expansion. Due to the existence of

thermo-osmosis effect, the bulk strain expressed by Equation (4.25) becomes larger. In

the same way, displacements with thermo-osmosis effect expressed by Equation (4.28) are

also larger than those without this effect. If the permeability coefficient is even smaller,

the ratio g2 = Sw/Kf should be consequently much larger, thermo-osmosis effect could

be more intensive, these will make the differences of bulk strain and displacement even

more obvious.

Figure 4.4a shows the thermally induced radial stresses (normalized by pa × 10−2)along

radius at time t = 20 hour. Minus sign denotes compressive stress. The radial stress has a

close relationship with displacement from Equation (4.29), it first grows up to peak value
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(a)

(b)

Figure 4.2: Pore pressure (a) along radius at time t = 20 hour (b) with time at r/a = 1.5
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(a)

(b)

Figure 4.3: Displacement (a) along radius at time t = 20 hour (b) with time at r/a = 1.5
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with the growth of displacement, and then declines with increasing r/a. When the ratio

r/a continues increasing, the displacement tends to steady state shown in Figure 4.3a, but

radial stresses tend to zero due to increasing radius r. At an observation point r/a = 1.5 as

shown in Figure 4.4b, the compressive radial stresses will first increase and then dissipate

gradually as time progresses, while the magnitude with thermo-osmosis effect is larger

than the one without this effect.

Figures 4.5a and 4.5b show the distributions of thermally induced fluid flux (normalized

by Kf ). The fluid flux with thermo-osmosis effect is significantly greater than Darcy flux,

i.e., without such effect. The difference of the two peak values is as great as two orders

of magnitudes for this group of parameters in this study. Darcy flux is related with the

gradient of pore pressure, its value should be minus with positive gradient of pore pressure

within the domain 0 < r/a < 1.3. in this region very close to the inner boundary, the

pore water will expand under heating and thus flow out from the permeable boundary, so

it results in the minus value for fluid flux. Fluid flux then tends to zero near r/a = 1.3

where the gradient of pore pressure equals to zero too. After this point, the value of fluid

flux will gradually evolve from positive to zero with the increase of the negative gradient

of pore pressure. If we take thermo-osmosis effect into consideration, the fluid flux is not

only related with the gradient of pore pressure but also with the gradient of temperature

based on Equation (4.9). And the gradient of temperature is always minus from Figure

6a which leads to the second term −Sw∇θf on the right hand of Equation (4.9) is always

positive. For the clay, the permeability coefficient Kf is very low, that makes the ratio

Sw/Kf relatively large, so the second term on the right hand of Equation (4.9) plays a

dominant role in the distribution of fluid flux. That’s why fluid flux with thermo-osmosis

effect is always positive and greatly larger than Darcy flux.

Concluding up to now, the phenomenon of thermo-osmosis is significant in this type

of materials, e.g., clay, limestone and granite, whose permeability coefficients are really

very low. But in gravel, sand, loess and many other soils and rocks with large values

of permeability, this phenomena is slight and can be neglected both in experimental and

theoretical works.

Different heat transfer theories will result in different temperature fields, which will signif-

icantly affect thermally induced stress, pore pressure and so on. Temperatures generated

from LTNE heat transfer and LTE heat transfer theories (normalized by θ0) are plotted in

Figures 4.6a and 4.6b. Their distributions are similar, i.e., all decrease gradually from the

inner boundary to zero along radial direction. The similarity can be explained through

Equations (4.20), (4.21) and (4.31) because they all observe the similar mathematical
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(a)

(b)

Figure 4.4: Radial stress (a) along radius at time t = 20 hour (b) with time at r/a = 1.5
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(a)

(b)

Figure 4.5: Fluid flux (a) along radius at time t = 20 hour (b) with time at r/a = 1.5
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forms which relate with MacDonald function. As time progresses, all the temperatures

will rise up due to heat transfer. In general, heat conductivity ks > kf from Table 4.1,

and the mixture heat conductivity k can be regarded as an average heat conductivity of

the two phases expressed under Equation (4.31), that’s why clay temperature is larger

than fluid temperature, and the equilibrium temperature always lies between solid and

fluid temperatures.

Take thermo-osmosis effect into consideration, the magnitudes of LTNE pore pressure,

radial stress and displacement are larger than the corresponding LTE ones as shown in

Figures 4.7–4.9, especially at the peak values. The peak value of LTNE fluid flux is also

larger than that of LTE fluid flux as shown in Figure 4.10. Furthermore, if the coefficient of

solid-fluid interface heat transfer h in Equation (4.11) and (4.12) is even more smaller the

difference with temperatures is more obvious especially at initial time, and this difference

could result in more significant differences in pore pressure, stress, displacement and fluid

flux.

4.5 Conclusions

Thermo-poroelastic theory fulfilling LTNE is employed to investigate the quasi static

response of temperatures, pore pressure, stress, displacement and fluid flux around a

cylindrical borehole subjected to impact thermal and mechanical loadings in an infinite

saturated porous medium. Analytical solutions are derived in Laplace transform space. A

group of parameters for a typical clay used in nuclear waste storage are adopted in parame-

ter study. Results fulfilling LTNE show that, with thermo-osmosis effect , the magnitudes

of thermally induced pore pressure, stress, displacement and fluid flux are larger than

those without this effect especially in the vicinity of the borehole. The difference of fluid

flux is as greater as two to three orders of magnitudes in this study. Temperatures derived

from LTNE heat transfer theory are different from that derived from LTE heat transfer

theory. It is shown both from the analytical solutions and the parameter results that the

LTE is a limit case of LTNE. These differences will result in differences in pore pressure,

stress, displacement and fluid flux, especially when the coefficient of solid-fluid interface

heat transfer is very small.
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(a)

(b)

Figure 4.6: Temperature (a) along radius at time t = 20 hour (b) with time at r/a = 1.5
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Figure 4.7: Pore pressure along radius at time t = 20 hour

Figure 4.8: Displacement along radius at time t = 20 hour
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Figure 4.9: Stress along radius at time t = 20 hour

Figure 4.10: Fluid flux along radius at time t = 20 hour



5 Analysis of Multilayered

Thermoelastic Media

5.1 Introduction

Multilayered structures widely exist in nature and are relevant to different engineering

problems. For instance, the geological structure may be considered for simplicity as

multilayered half space (Kennett 2009). There are also various manmade materials or

structures that can be regarded as multilayered structures for modelling applications.

More often the multilayered structure is assumed to be composed of homogeneous parallel

layers. Several approaches exist to solve the static and dynamic problems for multilayered

structures. The most common numerical methods are FEM and BEM. As an alternative

one can consider the finite layer method (FLM) (Small & Booker 1984, 1986a) and the

analytical layer-element method (ALEM) (Ai et al. 2015b; Ai & Wang 2015; Ai et al.

2015a). However, both methods require an assembling of a stiffness matrix whose size is

proportional to the number of layers N and thus the methods are becoming inefficient if

the number N is large (Pan 1989b, 1997). One of the best methods to treat problems is

the propagator matrix method (PMM) (Singh 1970).

In this chapter, we will adopt the generalized propagator matrix method to analyze of

temperature-induced deformations in multilayered thermoelastic media. First will be pre-

sented the governing equations for a 3D formulation of the problem for the response of

multilayered thermoelastic media subjected to surface loads and containing a heat sources.

Second, a set of vector surface harmonics (Kennett 2009) will be introduced, followed by

application of PMM with the aid of continuity conditions to derive the general solution

for temperature, displacements and stress. Moreover, the numerical instability problem in

the conventional PMM algorithm will be discussed and resolved in a special generalization

technique. Next, a numerical strategy of high-order adaptive Gaussian quadrature method

with continued fraction expansions (Chave 1983) will be employed to approximate the

59
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integral–form solution expressed in terms of semi-infinite Hankel-type integrals. Finally,

the solution will be firstly applied to treat the problem of repository for heat-emitting

high-level nuclear waste (HLW) in a geological formation. The temperature-induced de-

formations, stresses and the temperature distribution are investigated and compared with

relevant previous results. The influence of source shape on the thermoelastic responses is

also discussed.

5.2 Governing equations

5.2.1 Governing equations for homogeneous thermoelastic media

In this study we consider the temperature distribution in a deformable body and therefore

the corresponding model evokes solution of a coupled thermo-mechanical problem. To

simplify the problem we assume that the thermal solution is independent of the mechanical

solution, although the thermoelastic coupling effect actually exists (Rundle 1982). In

case the material is homogeneous and isotropic and the heat flow obeys Fourier’s law the

relation between the heat flux and the gradient of the excess temperature reads:

qH = −k∇θ (5.1)

where θ is the excess temperature, qH is the heat flux, k is heat conductivity. Combining

Equation (5.1) with the conservation of energy equation leads to:

ρcθ̇ = k∇2θ + q (5.2)

where ρ is density of the material, c is the specific heat capacity, q denotes the heat

generated by the heat source per time and volume. The Duhamel-Neumann relations

establish the relationships between the states of stress, strain and temperature, and can

be written as follows:

σσσ = 2Gεεε+ λεv I− 3KαθI (5.3)

where σσσ and εεε are stress and strain tensors, respectively, εv is the volumetric strain,

G and λ are Lame coefficients, K = (3λ + 2G)/3 is the bulk modulus, α is the linear

thermal expansion coefficient, and I denotes the second order identity tensor. The strain-

displacement relations are:

εεε = [∇u + (∇u)T ]/2 (5.4)
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where u is displacement vector and the superscript ()T represents transpose vector or

matrix. The static equilibrium, with the body force being neglected, is given by

∇ · σσσ = 0 (5.5)

Suppose that at the surface of the model domain (z = 0) a traction vector Teeez
0 and

temperature θ0 are applied, that means

σzjeeej|z=0 = Teeez
0 , θ|z=0 = θ0 (5.6)

where eeej, j = 1, 2, 3 or j = z, ϕ, r are the three orthogonal unit vectors in Cartesian

or cylindrical coordinate systems. If the medium fills the half space, infinite boundary

conditions can be written as

lim
z→∞

(u, θ)→ 0 (5.7)

If the medium is placed in a finite in z–direction domain and the bottom is considered to

be fixed, e.g. at zn, the boundary conditions are:

u|z=zn = 0,
∂θ

∂z
|z=zn = 0 (5.8)

Furthermore, if a multilayered structure is considered, the boundary conditions at the

welded contact interface are the continuity of displacement and temperature conditions

that hold at each interface zi:

u|z=zi+ = u|z=zi− θ|z=zi+ = θ|z=zi− (5.9)

5.2.2 Vector surface harmonics

Now we introduce a set of vector surface harmonics in 3D cylindrical coordinate system,

defined as (Kennett 2009):

Lmξ (r, ϕ) = Smξ ez (5.10)

Mm
ξ (r, ϕ) =

∂Smξ
∂r

er +
∂Smξ
r∂ϕ

eϕ (5.11)

Nm
ξ (r, ϕ) =

∂Smξ
r∂ϕ

er −
∂Smξ
∂r

eϕ (5.12)

where (er, eϕ, ez) are orthogonal unit vectors in cylindrical coordinate system, and the

scalar functions Smξ are defined as:

Smξ (r, ϕ) = Jm(ξr)eimϕ/
√

2π m = 0,±1,±2, ... (5.13)
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These functions satisfy the Helmholtz equation:

∇2Smξ + η2Smξ = 0 (5.14)

where η is the wavenumber, and Jm(ξr) denotes the m-th order Bessel function of the first

kind. The vector surface harmonics in cylindrical coordinate system form an orthogonal

and complete space and any integrable scalar and vector function can be expressed in

terms of the vector surface harmonics. Thus, the displacement vector, traction vector at

the surface, temperature and the heat flux in z-direction qHz = θ,z can be expanded in

the following way:

û(r, ϕ, z, s) = ûrer+ûϕeϕ+ûzez =
∑
m

∫ ∞
0

[Ûm
ξL(z, s)Lmξ +Ûm

ξM(z, s)Mm
ξ +Ûm

ξN(z, s)Nm
ξ ]ξdξ

(5.15)

T̂eeez(r, ϕ, z, s) = σ̂rzer+σ̂ϕzeϕ+σ̂zez =
∑
m

∫ ∞
0

[T̂mξL(z, s)Lmξ +T̂mξM(z, s)Mm
ξ +T̂mξN(z, s)Nm

ξ ]ξdξ

(5.16)

θ̂(r, ϕ, z, s) =
∑
m

∫ ∞
0

Θ̂m
ξ (z, s)Smξ ξdξ (5.17)

q̂Hz(r, ϕ, z, s) =
∑
m

∫ ∞
0

Q̂m
ξH(z, s)Smξ ξdξ (5.18)

Furthermore, q̂, T̂eeez
0 (r, ϕ, s) and θ̂0(r, ϕ, s) are given as:

q̂(r, ϕ, z, s) =
∑
m

∫ ∞
0

Q̂mξ (z, s)Smξ ξdξ (5.19)

T̂eeez
0 (r, ϕ, s) =

∑
m

∫ ∞
0

[T̂mξL0(s)L
m
ξ + T̂mξM0(s)M

m
ξ + T̂mξN0(s)N

m
ξ ]ξdξ (5.20)

θ̂0(r, ϕ, s) =
∑
m

∫ ∞
0

Θ̂m
ξ0(s)S

m
ξ ξdξ (5.21)

where the functions with hat are defined as:

f̂(r, ϕ, z, s) =

∫ ∞
0

e−stf(r, ϕ, z, t)dt (5.22)

The complex variable s implies that Laplace transform method is employed to suppress

the time factor t.

Substituting Equations (5.15)–(5.18) into Equations (5.1)–(5.5), after considerable alge-

braic manipulation, we can obtain the following systems of ordinary differential equations
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for the expansion coefficients in Equations (5.15)–(5.18):

d

dz



Ûm
ξL

Ûm
ξM

T̂mξL

T̂mξM

Θ̂m
ξ

Q̂m
ξH


=



0 λ
M
η2 1

M
0 α0

M
0

−1 0 0 1
µ

0 0

0 0 0 η2 0 0

0 (M − λ2

M
)η2 − λ

M
0 α0(1− λ

M
) 0

0 0 0 0 0 − 1
k

0 0 0 0 −k( s
κ

+ η2) 0





Ûm
ξL

Ûm
ξM

T̂mξL

T̂mξM

Θ̂m
ξ

Q̂m
ξH


(5.23)

In a compact form it reads:
d

dz
f = M1f (5.24)

where M = λ+ 2G, α0 = Kα, κ = k/(ρc) is the heat diffusivity. The vector f is defined

as:

f = [Ûm
ξL, Û

m
ξM , T̂

m
ξL, T̂

m
ξM , Θ̂

m
ξ , Q̂

m
ξH ]T (5.25)

Finally, M1 is the notation for the corresponding matrix in Equation (5.23).

5.2.3 Propagator matrix method

In a homogeneous media, the general solution of Equation (5.24) is

f(z) = eM1(z−z?)f(z?) = Pz
z?f(z

?) (5.26)

where the matrix Pz
z? = eM1(z−z?) is called propagator because it propagates the solutions

at z? to z. The matrix M1 should be diagonalized by a similarity transformation in order

to get the propagator matrix:

Pz
z? = EeM1(z−z?)E−1 (5.27)

where M1 is the diagonal matrix composed of the eigenvalues of M1, E is the matrix

containing the corresponding eigenvectors. Equation (5.26) can also be written as

f(z) = Gz
z?V1(z

?) , (5.28)

where Gz
z? = EeM1(z−z?), V1(z

?) = E−1f(z?). f(z?) and V1(z
?) are determined by the

boundary conditions if all the variables at z? are specified. In addition we have:

f(z?) = eM1(z?−z)f(z) = Pz?

z f(z) (5.29)
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Pz
z? = (Pz?

z )−1 (5.30)

Equations (5.29) and (5.30) reveal that the solutions can also propagate in the converse

direction with a suitable choice of the propagator matrix. An instructive approach is

adopted here to obtain the propagator matrix. Note that M1 can be taken as a 6 × 6

triangular block matrix partitioned into 4×4 submatrix A for the purely elastic behavior,

2× 2 submatrix B for the heat conduction behavior and a 4× 2 submatrix C describing

the coupled effect

M1 =

[
A C

0 B

]
(5.31)

Based on the properties of block matrix, the determinant of matrix M1 is equal to the

multiplication of those of the submatrices on the main diagonal. The eigenvalues and

corresponding eigenvectors are simply the combination of those of the submatrices. The

procedure how to get the eigenvalues and eigenvectors M1 is shown in appendix A in

details.

In the previous section we obtained the propagation relation for a homogeneous media.

Hereafter we consider a semi-infinite thermoelastic medium consisting of n parallel homo-

geneous layers as depicted in Figure 5.1. The origin of the coordinate system is placed

at the surface with the z-axis drawn down into the medium and z0 = 0. The i-th layer

is of thickness hi, and bounded by the interface z = zi−1 and z = zi. P
zi−1
zi denotes

the propagator matrix in the i-th homogeneous layer. Using Equations (5.29) and (5.9)

successively, the global propagation relation can be written as:

f(z0) = Pz0
znf(zn) (5.32)

where Pz0
zn = Pz0

z1
· Pz1

z2
· · · Pzn−2

zn−1
· Pzn−1

zn is the global propagator matrix which describes

how solution propagates from z = zn through all the layers up to z = z0.

5.2.4 Equivalent sources

The existence of a buried source will invoke discontinuity at the source level. Suppose

that there are a traction T̂eeez and a heat source q̂ buried at depth z = zj which is just

on the interface of j-th and (j + 1)-th layers. T̂eeez and q̂ is expanded in vector surface

harmonics:

∆f = [∆Ûm
ξL,∆Û

m
ξM ,∆T̂

m
ξL,∆T̂

m
ξM ,∆Θ̂m

ξ ,∆Q̂
m
ξH ]T = f(zj+)− f(zj−) (5.33)



5.2 Governing equations 65

together with the following two relations for the propagator:

f(z0) = Pz0
zj
· f(zj−) (5.34)

f(zj+) = Pzj
zn · f(zn) (5.35)

By substituting Equations (5.33) and (5.35) into Equation (5.34), we have

f(z0) = Pz0
zn · f(zn)−Pz0

zj
·∆f (5.36)

where zj± denote the depths above/below the source level. For the source type there

are in literature examples for a point force (Kennett & Kerry 1979; Kennett 2009), fluid

injection (Pan 1999; Zheng et al. 2013a) and displacement dislocation (Pan 1989a). The

expressions for the expansion coefficients ∆Ûm
ξL, ∆Ûm

ξM , ∆T̂mξL and ∆T̂mξM can be found

elsewhere, e.g. in the above cited papers. However, in our case the temperature field is

taken into account, thus a source function for heat source defined in Equation (5.2) has

to be defined. We consider a point heat source in cylindrical coordinate system as

q̂ = Q̂(s) · δ(r)δ(z − zj)
πr

(5.37)

Q̂(s) represents a frequency dependent factor, δ denotes Dirac delta function. Expanding q̂

in the vector surface harmonics as in Equation (5.19) and then substituting the expansion

coefficients into Equations (5.2) and (5.1), we find

Q̂mξ = Q̂(s)δ(z − zj)/
√

2π (5.38)

∆Q̂m
ξH = Q̂(s)/

√
2π, ∆Θ̂m

ξ = 0 (5.39)

In additional, if a circular-shaped heat source with the same Q̂(s) is taken into account,

the corresponding equations are:

q̂ = Q̂(s) · Πr0(r)δ(z − zj) (5.40)

Q̂mξ =
√

2πQ̂(s)δ(z − zj)r0J1(r0ξ)/ξ (5.41)

∆Q̂m
ξH =

√
2πQ̂(s)r0J1(r0ξ)/ξ, ∆Θ̂m

ξ = 0 (5.42)

where Πr0(r) is a rectangular function equal to 1 for 0 ≤ r ≤ r0 and 0 otherwise, r0 is the

radius of the source. Thus the propagation relations for a domain with a buried source

are defined, however the unknown coefficients for f(z0) and f(zn) have to be determined

by the boundary conditions.
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5.3 Analytical solutions for fixed and infinite boundary

conditions

We consider two cases for finding the general solution.

Case 1: the model consists of n parallel layers overlaying a homogeneous half space. In

this case, Equation (5.36) can be rewritten as:

f(z0) = Pz0
zn ·G

znV1 −Pz0
zj
·∆f (5.43)

where V1 = [v1, v2, v3, v4, v5, v6] is the vector of unknowns. According to the condi-

tions (5.7), v1 = v3 = v5 = 0 because these members of V1 are related to the exponentially

increasing terms Singh (1986). The left three coefficients v2, v4 and v6 are determined by

the boundary conditions (5.6) together with the expressions (5.20) and (5.21):

T̂mξL(0) = T̂mξL0 = [Pz0
zn ·G

zn ]32 ·v2 + [Pz0
zn ·G

zn ]34 ·v4 + [Pz0
zn ·G

zn ]36 ·v6− [Pz0
zj
·∆f ]31 (5.44)

T̂mξM(0) = T̂mξM0 = [Pz0
zn ·G

zn ]42 ·v2 +[Pz0
zn ·G

zn ]44 ·v4 +[Pz0
zn ·G

zn ]46 ·v6− [Pz0
zj
·∆f ]41 (5.45)

Θ̂m
ξ (0) = Θ̂m

ξ0 = [Pz0
zn ·G

zn ]52 · v2 + [Pz0
zn ·G

zn ]54 · v4 + [Pz0
zn ·G

zn ]56 · v6− [Pz0
zj
·∆f ]51 (5.46)

Case 2: the model comprises of n parallel layers and is finite in z direction. Based on the

boundary Equations (5.6) and (5.8), the three unknown coefficients T̂mξR, T̂mξS and Θ̂m
ξ in

f(zn) are determined by the following three equations:

T̂mξL(0) = T̂mξL0 = [Pz0
zn ]33 · T̂mξL(zn)+[Pz0

zn ]34 · T̂mξM(zn)+[Pz0
zn ]35 · Θ̂m

ξ (zn)− [Pz0
zj
·∆f ]31 (5.47)

T̂mξM(0) = T̂mξM0 = [Pz0
zn ]43 ·T̂mξL(zn)+[Pz0

zn ]44 ·T̂mξM(zn)+[Pz0
zn ]45 ·Θ̂m

ξ (zn)−[Pz0
zj
·∆f ]41 (5.48)

Θ̂m
ξ (0) = Θ̂m

ξ0 = [Pz0
zn ]53 · T̂mξL(zn) + [Pz0

zn ]54 · T̂mξM(zn) + [Pz0
zn ]55 · Θ̂m

ξ (zn)− [Pz0
zj
·∆f ]51 (5.49)

After determination of all the unknowns, we can write the expressions for the expansion

coefficients. Thus, for case 1 we have

f(z) = Pz
zn ·G

znV1 −Pz
zj
·∆f z ≤ zj (5.50)

f(z) = Pz
zn ·G

znV1 z > zj (5.51)

While for for case 2 we obtain:

f(z) = Pz
zn · f(zn)−Pz

zj
·∆f z ≤ zj (5.52)

f(z) = Pz
zn · f(zn) z > zj (5.53)
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Substituting Equations (5.50)- (5.53) into Equations (5.15)- (5.18), and applying Laplace

inversion transform, we can get the solution in t–time domain for displacement vector,

stress tensor, temperature and heat flux.

As mentioned earlier, the loss-of-precision problem will arise if the number and thickness

of the layers are large. Let us consider as an example case 1. It is clear that each element

in the propagator matrix P
zi−1
zi is proportional to e(ζ1+ζ5)hi that increases exponentially.

We factor out e(ζ1+ζ5)hi from the matrix P
zi−1
zi , thus a new matrix P

zi−1?
zi is obtained:

Pzi−1
zi

= e(ζ1+ζ5)hiPzi−1∗
zi

(5.54)

Equations (5.50) and (5.51) can be rewritten, respectively, as

f(z) = e−(z−zn)Pz∗
zn ·G

znV1 − e−(z−zj)Pz∗
zj
·∆f z ≤ zj (5.55)

f(z) = e−(z−zn)Pz∗
zn ·G

znV1 z > zj (5.56)

It is to point out that because all the matrices in the above equation are exponentially

decaying, this fact together with the normalization technique will efficiently prevent the

occurring of the loss-of-precision.

5.4 Parameter study

The explicit solution is expressed in terms of semi-infinite Hankel integrals in the form:

f̂m(r, z, s) =

∫ ∞
0

F̂m(ξ, z, s)Jm(rξ)ξdξ (5.57)

Chave (1983) developed a method that comprises of a high order adaptive algorithm of

quadratures and continued fraction expansion to accurately evaluate the Hankel transform

in Equation (5.57). This algorithm applies numerical quadrature to the evaluation of a

sequence of partial integration terms as follows:∫ ∞
0

F̂m(ξ, z, s)Jm(rξ)dξ =
I∑
i=0

∫ ξi+1

ξi

F̂m(ξ, z, s)Jm(rξ)dξ (5.58)

where ξ0 = 0, ξi (i = 1, 2, 3, ...I) is the i-th zero of Jm(rξ). For each partial integration

term, the N -node Gaussian quadrature algorithm is applied to approximate the value of

the integral: ∫ ξi+1

ξi

F̂m(ξ, z, s)Jm(rξ)dξ =
ξi+1 − ξi

2

J∑
j=1

wjF̂m(Ξ̄j, z, s)Jm(rΞ̄j) (5.59)
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where Ξ̄j = ξi+1−ξi
2

Ξj + ξi+1+ξi
2

, Ξj and wj are Gaussian node and corresponding weight,

respectively. The method applied to the numerical inverse Laplace transform is the Crump

method (Crump 1976), and it gives as a result the solution in time domain:

fm(r, z, t) =
2es0t

t0
{−1

2
<(f̂m(r, z, s0)) +

K0∑
k0=0

(<(f̂m(r, z, s0 + in
2π

t0
)) cos k0

2π

t0
t

−=(f̂m(r, z, s0 + in
2π

t0
)) sin k0

2π

t0
t)}

(5.60)

where t0 and s0 are parameters and t0s0 = 5 to 10 gives good results, < and = denote the

real and imaginary parts of f̂m. The numerical results are valid only for t ≤ t0/2.

5.5 Application to heat emitting HLW repository

5.5.1 Description of the problem

The numerical example presented in this section is applicable to modelling the processes

that take place in repository for heat-emitting HLW. Figure 5.2 shows the problem for

simulating a repository facility for heat-emitting HLW. According to the project report of

the Belgian Nuclear Research Centre in Mol and the information given in Picard (1994),

the HLW is assumed to be a decaying point heat source situated at 230 m depth from the

ground surface of a Boom clay layer. For the point heat source we have Small & Booker

(1986a):

q = Q0e
−ωt · δ(r)δ(z − zj)

πr
(5.61)

where Q0 is the initial strength of the source, ω = ln2/t0.5 is decay constant, t0.5 is half

life of the HLW. The particular values used here are Q0 =2 KW/m3 and ω =0.024. The

layer of Boom clay with a thickness of about 100 m is the buffer which overlays a half

space. We divide this layer into two sublayers at the heat source level z =180 m. Thus,

the model can be regarded as an axisymmetric four-layered thermoelastic half space with

a point heat source at zj =230 m and r =0.

5.5.2 Numerical results and discussions

For an axisymmetric model, the index m in the vector surface harmonics is zero (Pan

1997). The analytical solutions are presented in appendix B. We select the first 15 integral

intervals, i.e. I = 15 in Equation (5.58), and adopt 20-node quadrature rule (J = 20)
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Table 5.1: Material parameters for multilayered structures

Parameter Unit L 1 L 2 and 3 L 4

depth z m 180 50 +∞
µ MPa 70 60 70

K MPa 166 100 166

α 1/◦C 1× 10−5 1× 10−5 1× 10−6

ρ kg/m3 2× 103 2.61× 103 2× 103

c J/(kg◦C) 937 937 937

k W/(m◦C) 2.21 2.21 2.75

for the first 5 intervals, 10-node quadrature rule (J = 10) for the last 10 intervals in

Equation (5.59). In Equation (5.60), we define t0 = 20, s0 = 0.25 and K0 = 100.

The material parameters are listed in Table 5.1. In the following a group of normalized

parameters is introduced:

z? =
z

L
r? =

r

L
t? =

κ

L2
t (5.62)

where L is a characteristic scale length and set to be 280 m which is equal to the width

(total depth) of the nonhomogeneous layers.

First of all, we compare our results with those reported in Small & Booker (1986a) as

verification. Figure 5.3 shows the variation of temperature with time at mid-depth. It is

clear that the temperature distribution obtained using the approach in this study perfectly

matches the results in the literature, which confirm the accuracy and applicability of the

proposed here method for solving thermoelastic problems. The definitions and values of

all the parameters can be found in Small & Booker (1986a).

Figures 5.4a and 5.4b show, respectively, the variation of temperature along depth z?

after 50 years and with time for three different depths. The temperature increases along

depth and reaches its peak of about 950C near the source, and tends to zero as z? →∞.

After about 50 years, temperature reaches its peak. After 200 years of HLW repository

operating the released temperature from the HLW will be 10% of the peak value.

The heat source will invoke deformations and stresses in the ground. Figures 5.5- 5.8 show

the thermal induced vertical and radial displacements along depth after 50 years and the

evolution with time of the displacements at three different depths, respectively. It is well

known that there is a singularity at the source level. The direction of vertical deformation

beneath/above the source is positive/negative. The surface deformation, as shown in
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Figure 5.5b, first increases with time and then tends to be zero gradually. The maximum

deformation at the surface is less than 2mm. The radial displacement along depth is

presented in Figure 5.6a. It is evident that the maximum of the radial displacement along

depth first increases with increasing of r? and after, at least for r? > 0.268 it starts to

decrease. It is clearly seen from Figure 5.6b that, the tendency of time history of radial

displacement is similar to the time history of the temperature evolution. After about

50 years, the radial displacement at r? = 0.035 attains the maximum value 3.04 mm.

The radial displacement value sharply drops down after 100 years and be only 6% of the

maximum value at 200 years.

Figures 5.7a and 5.7b depict, respectively, the variations of thermal induced vertical stress

along depth after 50 years and versus time at three different depths. The maximum

vertical stress is about 56 kPa near the source level, however, it is equal to zero at the

surface. Far from the center line, the vertical stress declines gradually and its value

at r? = 0.36 is about 10% of the peak value. Corresponding to the time history of

temperature, the vertical stress also increases first and attains peak value after about

50 years, then it decreases gradually in the course of time. After 100 years the value of

the vertical stress decrease sharply and will be nearly zero after 500 years. The thermal

induced radial stress, as shown in Figures 5.8a and 5.8b, has similar distribution with the

thermal induced vertical stress. However, the peak value at center line is about 38 kPa

which is slightly below the corresponding value of the vertical stress.

In order to study the influence of heat source shape on temperature, displacements and

stresses distributions, a circular-shaped heat source with the same strength and decay

constant as defined in Equation (5.40) is selected for analysis. Figure 5.9 shows the

impact of source shape on the distributions of temperature in 100 years. The temperature

increases when the radius of the source increases and be always larger than that caused by

point heat source. The maximum temperature at radius r0 = 1.5m is about 900C which

is 1.6 times larger than the relative value caused be point source. The source shape will

also affects the variations of vertical and radial displacements as depicted in Figures 5.10

and 5.11. They indicate that the absolute values of displacements will increase with

source’s radius and are always larger than the relative values caused by point source.

The similar conclusions can also be obtained from Figures 5.12 and 5.13 which depict the

effects of source shape on the vertical and radial stresses.

In this study, the heat emission of the HLW after 100 years is only 9% of the initial value

which can be obtained from Equation (5.61). The temperature has a strong effect on

the static response in the ground in the first 200 years. However, temperature will tend
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Figure 5.1: 3D multilayered structure with surface loads and internal heat sources

to zero after 500 years, and all the variables, like the thermal induced deformations and

stresses, will also tend to zero. The magnitudes of temperature, deformations and stresses

are consistent that reported in the previous works (Small & Booker 1986a; Picard 1994).

Through the numerical simulations in this study, it indicates that the HLW significantly

influences the surrounding ground at the first 500 years, especially at the first 200 years.

5.6 Conclusions

In this article, a comprehensive analytical solutions for the axisymmetric analyses of mul-

tilayered thermoelastic media with surface loads and containing heat source are presented.

The governing equations together with boundary and initial conditions for a 3D formu-

lation of the problem for the response of multilayered thermoelastic media subjected to

surface loads and containing a heat source are first presented. A set of vector harmonics
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Figure 5.2: 3D axisymmetric multilayered structure with internal heat source

Figure 5.3: Comparisons of temperature distributions with time at mid-depth z = 0.5h

to Small & Booker Small & Booker (1986a)(lines)
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(a)

(b)

Figure 5.4: Variations of temperatures (a) along depth z? in 50 years (b) with time t? at

r? = 0
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(a)

(b)

Figure 5.5: Variations of the vertical displacements (a) along depth z? in 50 years (b) with

time t? at r? = 0
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(a)

(b)

Figure 5.6: Variations of thermal induced radial displacements (a) along depth z? in 50

years (b) with time t? at r? = 0.035
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(a)

(b)

Figure 5.7: Variations of thermal induced vertical stresses (a) along depth z? in 50 years

(b) with time t? at r? = 0
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(a)

(b)

Figure 5.8: Variations of thermal induced radial stresses (a) along depth z? in 50 years

(b) with time t? at r? = 0
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Figure 5.9: Effect of source’s shape on temperature in 100 years

Figure 5.10: Effect of source’s shape on vertical displacement in 100 years
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Figure 5.11: Effect of source’s shape on radial displacement in 100 years

Figure 5.12: Effect of source’s shape on vertical stress in 100 years
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Figure 5.13: Effect of source’s shape on radial stress in 100 years

is introduced, and then propagator matrix method is employed, with the aid of source

functions, to derive the general solutions of static response. The numerical instability

problem in the conventional algorithm is discussed and resolved by introduction of nor-

malization technique and a improved new propagator matrix. Next, a numerical scheme

of high-order adaptive Gaussian quadrature method with continued fraction expansions,

and Crump’s method for Laplace inversion are employed to approximate the integral so-

lutions expressed in terms of semi-infinite Hankel-type integrals. Finally, the solutions are

applied to solve the problem of repository for heat-emitting HLW in which the geological

structure is treated as a four-layered half space and the HLW as a decaying with time

point heat source. The variations of temperatures and the temperature-induced displace-

ments and stresses are investigated with a kind of Boom clay which is used as the buffer

in repository for heat-emitting HLW. The influences of source shape on the thermoelastic

responses are also discussed. The numerical results agree well with the previous works

and provide a verification to the propagator matrix method which can effectively solve

the problem of static response in 3D multilayered thermoelastic media.



6 Heat Transfer in a Geothermal

Heat-Pump System

6.1 Introduction

Geothermal heat is a type of energy produced mainly through radioactive decay in the

core of the earth, about 6000 km below the surface. Geothermal heat-pump systems

utilize the ground as a heat source. The system, which works by supplying heat to the

ground during the summer and extracting heat during the winter, is more efficient than

electric or gas/oil heating systems. A geothermal heat-pump system can reduce energy

consumption by up to 44% compared with an air-source heat-pump system and up to 72%

compared with conventional electrical heating and air conditioning (Omer 2008). Another

important advantage of geothermal heat-pump systems is that they are less damaging to

the environment.

A typical geothermal heat-pump system consists of a heat pump and a vertical heat

exchanger system installed into the ground at depths ranging from 40 to 200 m. A heat-

pump system model that involves two working modes, passive and active, is considered

in this paper. In the heating mode, a certain amount of fluid is injected into the borehole

and is then pumped out through a pipe after being heated or cooled to the required

temperature. Many different factors influence geothermal heat-pump system performance,

including the ground temperature distribution, possible freezing and thawing of the soil,

thermal resistance of the pipe and of the grouting material, etc. Suitable modelling and

an analytical solution of the problem describing geothermal heat-pump system response

are thus necessary to better predict performance and improve the design of such systems.

81
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6.2 Formulation of the problem and the governing

equation

6.2.1 Modelling of a vertical U-tube ground heat exchanger

In practice, U-tube heat exchanger systems are the most often investigated and applied

geothermal heat exchangers. The first analytical theory of heat transfer in a geothermal

heat-pump system was proposed by Ingersoll & Plass (1948), and this served as a basis for

the development of many later design programmes. A schematic illustration of a single

U-tube vertical heat exchanger used in simulations is depicted in Figure 6.1. Because the

depth of the borehole is much larger than its diameter, the heat transfer process near the

borehole is often formulated by line-source theory (i.e. Kelvin’s infinite line source) or

the cylindrical-source theory proposed by Carslaw & Jaeger (1947). However, both these

theories neglect axial heat flow along the depth and are only adequate for short time

applications of durations from hours to months.

Figure 6.1: Vertical borehole in geothermal heat-pump system (U-tube model)

In practice, U-tube heat exchanger systems are the most often investigated and applied

geothermal heat exchangers. The first analytical theory of heat transfer in a geothermal

heat-pump system was proposed by Ingersoll & Plass (1948), and this served as a basis for

the development of many later design programmes. A schematic illustration of a single
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U-tube vertical heat exchanger used in simulations is depicted in Fig. 1. Because the

depth of the borehole is much larger than its diameter, the heat transfer process near the

borehole is often formulated by line-source theory (i.e. Kelvin’s infinite line source) or

the cylindrical-source theory proposed by Carslaw & Jaeger (1947). However, both these

theories neglect axial heat flow along the depth and are only adequate for short time

applications of durations from hours to months.

A finite line-source theory was developed by Eskilson (1987) and improved by Zeng et al.

(2002), taking the axial heat flow condition into consideration. Bandos et al. (2009)

investigated a three-dimensional finite line-source model for a borehole heat exchanger.

Based on this theory, in the domain rb ≤ r, 0 ≤ z ≤ H, 0 ≤ t the distribution of the

ground temperature θ is governed by the heat conduction equation

1

a

∂θ(r, z, t)

∂t
=
∂2θ(r, z, t)

∂r2
+

1

r

∂θ(r, z, t)

∂r
+
∂2θ(r, z, t)

∂z2
(6.1)

Considering the geothermal gradient implies that the initial ground temperature increases

linearly with depth, such that

θ(r, z, t)|t=0 = θ0 +
qgeo
k
z (6.2)

The ground temperature at the surface is assumed to be constant and equal to the ambient

temperature

θ(r, z, t)|z=0 = θ0 (6.3)

The borehole can be regarded as a line source, so the boundary condition at the borehole

wall is

− k∂θ(r, z, t)
∂r

∣∣∣
r=rb

=
qb

2πrb
(6.4)

In the above equations a is the ground thermal diffusivity, k is the ground thermal con-

ductivity, qb is the heating rate per unit length, qgeo is the geothermal heat flux and rb is

the radius of the borehole. Compared with the models of Eskilson (1987) and Zeng et al.

(2002), in the case considered here the initial temperature is not uniform but linearly

increases with depth. This augment is much higher near tectonic plate boundaries where

the earth’s crust is thinner.

In order to derive an analytical solution to the problem defined by Equations (6.1)–(6.4)

there are some necessary assumptions to be accepted Zeng et al. (2002).

• The ground is regarded as a homogeneous semi-infinite media with constant thermal

properties.
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• Ground surface temperature is constant and it may be considered to be equal to the

annual average ambient temperature.

• The cylindrical borehole is approximated by a finite line source and this may be

assumed because the borehole radius is much smaller than the length of the borehole.

• The heating rate per unit line-source length is constant.

Solution of the boundary and initial value problem defined by Equations (6.1)–(6.4) is

θ(r, z, t) = θ1(r, z, t) + θ2(r, z, t)

=
qb

4πk

∫ H

0

{
erfc

(
[r2 + (z − h)2]

1/2
/2(at)1/2

)
[r2 + (z − h)2]1/2

−
erfc

(
[r2 + (z + h)2]

1/2
/2(at)1/2

)
[r2 + (z + h)2]1/2

}
dh+ θ0 +

qgeo
k
z

(6.5)

where the first term on the right-hand side denotes the solution for constant initial condi-

tions. The solution given by Equation (6.5) may be considered equivalent to the solution

proposed by Bandos et al. (2009). Of most interest is the temperature excess of the bore-

hole wall, especially the temperature at the midpoint of the line source θb = θ(rb, 0.5H, t),

which is often adopted as representative of the borehole temperature.

6.2.2 Two-stage open heat exchange system

The heat exchanger system whose mathematical modelling is proposed in this paper

employs the concept of a two-stage open heat exchange system - the passive step is shown

schematically in Figure 6.2, and Figure 6.3 illustrates the active step. In the following,

the basic assumptions are introduced, the mathematical model describing each step is

formulated and the corresponding analytical solutions are obtained and discussed. Based

on the corresponding analytical solutions, the performance of the two-stage heat exchange

system is then compared with that of the U-tube heat exchanger. In addition, a parameter

study is performed and the outcome is reported.

6.2.3 The passive step of the two-stage model

At the initial state the borehole is filled with fluid with a uniformly distributed initial

temperature (i.e. constant). This fluid serves as the heat exchange medium. The fluid will

be heated over time by the surrounding rock mass.During this procedure the temperature
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at the top remains constant and equal to the ground surface temperature. Because the

fluid is supposed not to move during this stage, this step of the modelling process is

defined here as the ’passive step’. Figure 6.2 depicts the implementation of the above

approach to the first phase (passive step) of the considered mathematical model.

Figure 6.2: Fluid temperature distribution inside borehole during the passive step

The radius of the borehole is much smaller than its depth and the temperature distribution

in the fluid may be considered to vary only with depth. In this case the temperature is

constant at a cross-section of the borehole, so that radial heat flow is minor. In the

domain 0 ≤ z ≤ H, 0 ≤ t ≤ t∗ the fluid temperature θf (z, t) during the passive step is

governed by the heat conduction equation with a heat source term as

1

af

∂θf
∂t

=
∂2θf
∂z2

+
qf
kf

(6.6)

At the start, the filling fluid has a uniform temperature, so the initial condition is

θf (z, 0) = θ∗ (6.7)

The temperature of the fluid at the top surface is assumed to be equal to the ambient

temperature, so the boundary condition at z = 0 reads

θf (0, t) = θ0 + (θ∗ − θ0)h(−t) (6.8)

The bottom of the borehole is considered to be insulated and therefore there we have the

following boundary condition for the fluid temperature

∂θf (z, t)

∂z

∣∣
z=H

= 0 (6.9)
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In these equations, af is the fluid thermal diffusivity, kf is the fluid thermal conductivity,

qf is the heating rate, H is the depth of the borehole, h(−t) is the Heaviside step function

and θ0 and θ∗ are constants.

In order to derive the analytical solution, the heating rate qf along the z-axis is assumed

to be constant. The analytical solution of the boundary and initial value problem for the

fluid temperature evolution defined via Equations (6.6)–(6.9) is

θf (z, t) = − qf
2kf

z2 +
qf
kf
Hz + θ0 +

∞∑
n=1

ansin
(2n+ 1)πz

2H
exp

(
−af (2n+ 1)2π2t

4H2

)
(6.10)

where

an =
4

(2n+ 1)π

(
θ∗ − θ0 −

qfH
2

kf

4

(2n+ 1)2π2

)
(6.11)

It can be observed that, as time t tends to infinity, the terms in the infinite series in

Equation (6.10) will tend to zero and the fluid temperature will step into a steady-state

quite quickly. This property of the model may be considered as proof of its physical

consistence.

6.2.4 The active step of the two-stage model

After the passive step, it is assumed that the fluid will start to be pumped out through a

pipe during t∗ < t ≤ 2t∗ as shown in Figure 6.3. This step is called hereafter the ’active

step’. In general, the temperature variation inside the pipe can be considered to be slow,

so it is common practice to model the heat transfer as a steady-state process (Eskilson

& Claesson 1988; Zeng et al. 2002). Therefore, the boundary value problem for the fluid

temperature distribution can be formulated as

ρfcfVp
∂θf (z)

∂z
=
θf (z)− θb

R
(6.12)

θf (z)|z=H = θH (6.13)

where ρf is the fluid density, cf is the fluid specific heat, Vp is the pumping rate, θb is the

borehole wall temperature (which is regarded as constant in order to make the problem

manageable), R is the thermal resistance between the pumped fluid and the borehole wall

and θH is constant and can be calculated using Equation (6.10) (i.e. θH = θf (H, t
∗)).

In order to make a comparison with the U-tube model, which is a closed-loop system, the

retention time t∗ is introduced, which can be calculated using the formula t∗ = πr2pH/Vp

in which rp denotes the radius of the pumping pipe. In the U-tube model, fluid is injected
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Figure 6.3: Schematic illustration of the heat exchange process during the active step

into the inlet pipe and then flows continuously out of the outlet pipe, so the flowing period

is 2t∗. However, in approach the presented here the fluid remains in a static state during

the time period 0 < t ≤ t∗ and after that, pump outs for time t∗ < t ≤ 2t∗. The purpose

of the following discussion is to compare the fluid temperature distributions under the

two different working conditions with the same pumping period 2t∗ and pumping rate Vp.

By introducing the dimensionless parameter

Θ̄f (Z) =
θf (Z)− θb
θ∗ − θb

(6.14)

in which Z = z/H, solution of Equation (6.12) with the boundary condition given in

Equation (6.13) gives the value of the outflow fluid temperature at time 2t∗ as

Θ̄f (HZ) = Θ̄f (H)

(
cosh

H

ρfcfVpR
− sinh H

ρfcfVpR

)
×
(
cosh

HZ

ρfcfVpR
+ sinh

HZ

ρfcfVpR

)
(6.15)

It is obvious from the solution that the thermal resistance R plays an important role in

the outflow temperature.

6.3 Parameter study

For the parameter study, a group of parameters characterising the type of rock and the

fluid was adopted as shown in Table 6.1.
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parameters values parameters values

a 1.15× 10−6m2/s nmax 2000

af 1.56× 10−7m2/s R 0.1mK/W

cf 3795J/kg/K rb 50− 100mm

H 100m rp 16m

k 1.5W/m/K Vp 0.0004m3/s

kf 0.6W/m/K θ0 100C

qb 30W/m θ∗ 100C

qgeo 0.1W/m2 ρf 1000kg/m3

Table 6.1: Model parameters (Eskilson & Claesson 1988; Zeng et al. 2003)

The simulation results are presented in terms of the dimensionless variables

• Z = z/H

• r̄ = r/H

• T = at/H2

• Θ(r̄, Z, T ) = (4πk/qb)θ(r̄, Z, T )

• Θf (Z, T ) = (4πk/qb)θf (Z, T )

During the passive step, the fluid inside the borehole is heated by the surrounding rock

mass; the evolution of the fluid temperature at different locations is given in Figure 6.4.

The results shown in Figure 6.4 were obtained using Equation (6.10). It is evident that

the temperature increases and seems to have the tendency to reach a steady state with

time. The distribution of the fluid temperature along the borehole length is shown in

Figure 6.5. At the free surface, the temperature remains constant due to the restriction

defined in Equation (6.8) and it continuously increases with depth. This temperature

distribution in the passive step is of course different from that in the U-tube model where

the fluid is flowing through the inlet pipe.

The active step begins when the fluid temperature reaches θf (z, t
∗), during the passive

step. In the active step, pumping of the fluid out through the pipe is simulated with the

same pumping rate as in the U-tube model. The upper and middle curves in Figure 6.6

are from the work of Diao et al. (2004), in which a single U-tube model was considered.

Equation (6.6) represents the dimensionless temperature distribution in the inlet and

outlet pipes under a certain pumping rate. The solutions for fluid temperature in the
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Figure 6.4: Fluid temperature change with time during the passive step

inlet and outlet pipes presented by Diao et al. (2004) for the U-tube model are

Θ̄fin(Z) = cosh(βZ)− R11

(R2
11 −R2

12)
1/2

×
[
1− R12

R11

coshβ − [(R11 −R12)/(R11 +R12)]
1/2sinhβ

coshβ + [(R11 −R12)/(R11 +R12)]1/2sinhβ

]
sinh(βZ)

(6.16)

Θ̄fout(Z) =
coshβ − [(R11 −R12)/(R11 +R12)]

1/2sinhβ

coshβ + [(R11 −R12)/(R11 +R12)]1/2sinhβ
cosh(βZ)

+
R11

(R2
11 −R2

12)
1/2

[
coshβ − [(R11 −R12)/(R11 +R12)]

1/2sinhβ

coshβ + [(R11 −R12)/(R11 +R12)]1/2sinhβ
− R12

R11

]
sinh(βZ)

(6.17)

where

β =
H

ρfcfVp [(R11 +R12)(R11 −R12)]
1/2

(6.18)

and R11 and R12 are coefficients of thermal resistance between pipes and between the pipe

and borehole wall, respectively.

The lower curve in Figure 6.6, computed according to Equation (6.14), represents the fluid

temperature distribution during the active step of the open loop and the same pumping
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Figure 6.5: Fluid temperature distribution along the depth during the passive step

rate as the curves in the closed-loop model. Notably, the initial value is θf (H, t
∗). Com-

parison of the results in Figure 6.6 indicates that the fluid in the passive step accumulates

much more energy from the surrounding rock mass. Therefore, the heat exchange model

in this study increases the borehole efficiency to some extent.

Figure 6.7 shows the temperature evolution with time at the mid-height of the borehole

wall and employs the solution given in Equation (6.5). The temperature at the considered

location increases rapidly at the beginning of the heat exchange system operation and

reaches steady state after approximately T = 0.3. The influence of the borehole radius

is also obvious from Figure 6.7 - the smaller the borehole radius, the larger the value of

dimensionless temperature at the steady state.

Figure 6.8 shows the distribution of the borehole wall temperature with depth at steady

state (i.e. t → ∞) and using Equation (6.5). The borehole wall temperature increases

rapidly from the ground surface, changes slightly in the region 0.2H to 0.8H and finally

drops rapidly in the last portion of the borehole depth. It can also be seen that smaller

values of borehole radius contribute to a higher temperature along the borehole length.

It is therefore to be concluded that the size of the borehole radius is an important factor

and has to be accounted for in the design of a geothermal heat-pump system.
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Figure 6.6: Fluid temperature distribution plotted against depth for open-loop and closed-

loop (U-tube) models

Due to the geothermal gradient, the ground has a nonuniform initial temperature and this

is accounted for by a linearly increasing initial temperature as explained by Equation (6.2).

This difference in initial temperature will result in a shifted temperature distribution

outside the borehole if compared with the results of Zeng et al. (2002). This difference

is significant near tectonic plate boundaries where a relatively high geothermal heat flow

exists.

6.4 Conclusions

A concept for a geothermal heat-pump system with a single vertical borehole and having

two working modes has been presented and the corresponding initial and boundary value

problem formulated. Furthermore, an analytical solution for a semi-infinite ground model

with a finite line source functioning in a two-mode regime was derived and the temper-

ature distribution of the fluid filling the borehole was obtained. The simplifications and

assumptions used in order to be able to find the analytical solution were explained and
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Figure 6.7: Mid-borehole wall temperature distribution plotted against time for different

borehole radii

discussed. The obtained solution was compared with the well-accepted and investigated

U-tube model (closed-loop model). The following important conclusions can be drawn

based on the results of the performed parameter study.

• The temperature of the borehole wall increases with the Fourier number T and, for

T > 0.3, reaches the steady state.

• The temperature of the borehole wall at steady state increases with depth rapidly

at first, quickly reaches saturation and becomes almost constant along the larger

portion of the borehole depth (0.2H to 0.8H), then drops rapidly drops near the

bottom of the borehole.

• The size of the borehole radius is an important factor in the efficiency of a heat

exchange system because a smaller borehole radius contributes to relatively higher

temperature along the system. This has to be accounted in the design of geothermal

heat-pump systems.

• The outflow temperature for the heat exchange system proposed in this study is

higher than that in the U-tube model. This indicates that the passive plus active
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Figure 6.8: Steady-state borehole wall temperature along depth for different borehole radii

operation can obtain more energy from the hot rock mass and thus improve the

efficiency of the system.

Even though the assumptions and simplifications considered here may be restrictive in

representing the real functioning of a geothermal heat-pump system, the derived analytical

solution promises to be useful in assessing some important features of this type of heat

exchange system. Furthermore, the results obtained may be used to validate more complex

models that allow only approximate numerical solutions.





7 Conclusions and recommendations

7.1 Conclusions

In this contribution, three problems which are closely related with heat transfer and

temperature-induced behaviours in Geoscience are theoretically and numerically investi-

gated. The three problems are heat transfer in geothermal heat-pump system, thermo-

osmosis effect in saturated porous media in which a THM coupled model is introduced

and the analysis of multilayered thermoelastic media with application to a repository

for heat-emitting high-level nuclear waste in a Geological Formation , respectively. The

mathematical-physical models for these problems are established first, the analytical solu-

tions are obtained and then the numerical simulations are implemented to investigate the

distributions of temperature response and the relevant temperature-induced behaviours.

The main derived conclusions are categorized as follows.

Coupled THM behaviour in saturated porous medium

The thermo-poroelastic theory fulfilling LTNE is employed to investigate the quasi-static

response of temperatures, pore pressure, stress, displacement and fluid flux around a

cylindrical borehole subjected to impact thermal and mechanical loadings in a semi-

infinite saturated porous medium. Analytical solutions are derived in Laplace transform

space. A group of parameters for a typical clay used in nuclear waste storage are adopted

in parameter study. Results fulfilling LTNE condition show that, with thermo-osmosis

effect , the magnitudes of thermally induced pore pressure, stress, displacement and fluid

are larger than those without this effect especially in the vicinity of the borehole. The

difference of fluid flux is as greater as two to three orders of magnitudes in this study.

Temperatures derived from LTNE heat transfer theory are different from that derived

from LTE heat transfer theory. It is shown both from the analytical solutions and the

parameter results that the LTE is a special case of LTNE. These differences will result

95
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in differences in pore pressure, stress, displacement and fluid flux, especially when the

coefficient of solid-fluid interface heat transfer is very small.

Multilayered thermoelastic media

A comprehensive analytical solutions for the axisymmetric analyses of multilayered ther-

moelastic media with surface loads and containing heat source are presented. The govern-

ing equations together with boundary and initial conditions for a 3D formulation of the

problem for the response of multilayered thermoelastic media subjected to surface loads

and containing a heat source are first presented. A set of vector harmonics is introduced,

and then propagator matrix method is employed, with the aid of source functions, to

derive the general solutions of static response. The numerical instability problem in the

conventional algorithm is discussed and resolved by introduction of normalization tech-

nique and a improved new propagator matrix. Next, a numerical scheme of high order

adaptive Gaussian quadrature method with continued fraction expansions, and Crump

method for Laplace inversion are employed to approximate the integral solutions expressed

in terms of semi-infinite Hankel-type integrals. Finally, the solutions are applied to solve

the problem of repository for heat-emitting HLW in which the geological structure is

treated as a four-layered half space and the HLW as a decaying with time point heat

source. The variations of temperatures and the temperature-induced displacements and

stresses are investigated with a kind of Boom clay which is used as the buffer in repository

for heat-emitting HLW. The influences of source shape on the thermoelastic responses are

also discussed. The numerical results agree well with the previous works and provide a

verification to the propagator matrix method which can effectively solve the problem of

static response in 3D multilayered thermoelastic media.

Heat transfer in geotechnics

A concept to model a geothermal energy heat-pump system with a single vertical borehole

is presented and the corresponding initial and boundary value problem is formulated.

Furthermore, the analytical solution for semi-infinite ground model with finite line source

is derived and the temperature distribution in the borehole wall and in the fluid filling the

borehole is obtained. The accepted simplifications and assumptions in order to be able

to find the analytical solution are explained and discussed. Several important conclusions

can be drawn based on the results of the performed parametric study of the analytical

solution:
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• The temperature of the borehole wall increases with the Fourier number T and

reaches the steady state for T > 0.3;

• The temperature of the borehole wall at steady state increases with depth first

rapidly, fast reaches saturation and is almost constant along the larger portion of

the borehole depth (0.2H − 0.8H), then near the bottom rapidly drops;

• The size of the borehole radius rb is an important factor for the efficiency of the heat

exchange system because smaller borehole radii contribute to relatively higher tem-

perature along the system. This has to be accounted in the design of the geothermal

heat pump system;

• Outflow temperature increases when accelerating the pumping velocity.

Even the assumptions and simplifications considered here may be restrictive for the model

to represent the real functioning of a geothermal heat-pump system, the derived analytical

solution is very useful to assess some important features of this type of heating exchange

systems. The results obtained here may be further used to validate more complex models

which allow only approximated numerical solutions.

7.2 Works in the next step

This thesis focuses on the heat transfer mechanism and the temperature-induced be-

haviours in Geotechnics and could be developed in the future. The very interesting and

constructive development could state as follows:

• The coupled THM model can be further developed to study the dynamic response

with the consideration of thermo-osmosis effect. The body force should be taken

into account. For a more complete energy balance equation, the heat convective

process in the fluid phase is also worthy of attention.

• The coupled THM model in saturated porous media can be improved to analyze the

static and dynamic responses in unsaturated porous media. To achieve it, the gov-

erning equations for three phases (solid, fluid and gas phases) and four constituents

(solid, fluid, vapor and air) should be presented.

• The multilayered thermoelastic structure can be improved to the more complete

multilayered thermoporoelastic structure with the introduction of pore pressure and

fluid velocity in the governing equations. Thus the scale of the relevant propagator

matrix will be enlarged from 6× 6 to 8× 8. The developed theoretical work can be
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applied to investigate the thermoporoelastic behaviours in the heat-emitting high

level nuclear waste repository in geological formation.
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Appendix A

The characteristic equation for matrix A is given as:

det(A− ζI) = det


−ζ λ

M
η2 1

M
0

−1 −ζ 0 1
µ

0 0 −ζ η2

0 (M − λ2

M
)η2 − λ

M
−ζ

 (A1)

The eigenvalues are ζ1 = ζ2 = η, ζ3 = ζ4 = −η. So we can get the diagonal matrix A and

the expression eAz as

eAz =


eζ1z 0 0 0

0 e−ζ1z 0 0

0 0 eζ1z 0

0 0 0 e−ζ1z

 (A2)

The corresponding eigenvectors compose the matrix EA and can be written as

EA =


d1(ζ1) d1(ζ1) d′1(ζ1) + zd1(ζ1) −d′1(ζ1) + zd1(ζ1)

d2(ζ1) −d2(ζ1) d′2(ζ1) + zd2(ζ1) d′2(ζ1)− zd1(ζ1)
η2

ζ1
−η2

ζ1
−η2

ζ21
+ z η

2

ζ1
−η2

ζ21
− z η2

ζ1

1 1 z z

 (A3)

where d1(ζ1) =
λζ21+Mη2

(M2−λ2)ζ21
d2(ζ1) =

λη2+Mζ21
(M2−λ2)ζ1η2 , the prime ’ denotes the first derivative

with respect to z. The propagator submatrix PA can be obtained by

PA = EAe
AzE−1A = [aij] (A4)
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with the elements aij being

a11 = a33 = −M + λ

2M
ηzsinh(ηz)+cosh(ηz) a12 =

M − λ
2M

ηsinh(ηz)−M + λ

2M
η2zcosh(ηz)

a13 = −(
1

2M
+

1

M − λ
)
1

η
sinh(ηz) +

1

2M

M + λ

M − λ
zcosh(ηz) a14 =

1

2M

M + λ

M − λ
ηzsinh(ηz)

a21 =
M − λ

2M

1

η
sinh(ηz) +

M + λ

2M
zcosh(ηz) a22 = a44 =

M + λ

2M
ηzsinh(ηz) + cosh(ηz)

a23 = −a14
η2

a24 = −(
1

2M
+

1

M − λ
)
1

η
sinh(ηz)− 1

2M

M + λ

M − λ
zcosh(ηz)

a31 = −M
2 − λ2

2M
η(sinh(ηz)− ηzcosh(ηz)) a32 =

M2 − λ2

2M
η3zsinh(ηz) a34 = −a21η2

a41 = −a32
η2

a42 = −M
2 − λ2

2M
η(sinh(ηz) + ηzcosh(ηz)) a43 = −a12

η2

and the submatrix GA can also be obtained by

GA = EAe
Az =


d1(ζ1)e

ζ1z d1(ζ1)e
−ζ1z [d′1(ζ1) + zd1(ζ1)]e

ζ1z [−d′1(ζ1) + zd1(ζ1)]e
−ζ1z

d2(ζ1)e
ζ1z −d2(ζ1)e−ζ1z [d′2(ζ1) + zd2(ζ1)]e

ζ1z [d′2(ζ1)− zd2(ζ1)]e−ζ1z
η2

ζ1
eζ1z −η2

ζ1
e−ζ1z (−η2

ζ21
+ z η

2

ζ1
)eζ1z (−η2

ζ21
− z η2

ζ1
)e−ζ1z

eζ1z e−ζ1z zeζ1z ze−ζ1z


(A5)

With the same methodology, we can get the eigenvalues of matrix B and the corresponding

eigenvectors. Thus the matrix EB, propagator submatrix PB and GB can be consequently

obtained as follows:

ζ5 =
√
η2 + s, ζ6 = −

√
η2 + s (A6)

eBz =

[
eζ5z 0

0 e−ζ5z

]
(A7)

EB =

[
1 1
k
L
ζ5 − k

L
ζ5

]
(A8)

PB = EBe
BzE−1B = [bij] =

[
cosh(ζ5z) − L

kζ5
sinh(ζ5z)

−kζ5
L

sinh(ζ5z) cosh(ζ5z)

]
(A9)

GB = EBe
Bz =

[
eζ5z e−ζ5z

kζ5
L
eζ5z −kζ5

L
e−ζ5z

]
(A10)
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The expression of matrix GC can be deduced directly from Equation (5.23) as

GC =


α1

ζ5
eζ5z −α1

ζ5
e−ζ5z

0 0

0 0
α2

ζ5
eζ5z −α2

ζ5
e−ζ5z

 (A11)

and the propagator submatrix PC can be derived based on the property of block matrix

by

PC = −GA(0)G−1A (z)GC(z)G−1B (z) + GC(0)G−1B (z) = [cij] (A12)

with the none-zero elements being

c11 = −α1

ζ5
sinh(ζ5z) c12 = − zL

ζ25k
(α1

d1
d2
− α2

d′1
d2

)sinh(ζ1z) +
α1L

ζ25k
(cosh(ζ5z)− cosh(ζ1z))

c22 =
L

ζ25k
[((α1 − α2d1)

d′2
d′1

+ α2d2)sinh(ζ1z) + (α1 − α2d1)
d2
d′1
zcosh(ζ1z)]

c32 = − η2L

ζ21ζ
2
5k

[((α1 − α2d1)
1

d′1
− α2ζ1)sinh(ζ1z)− (α1 − α2d1)

ζ1
d′1
zcosh(ζ1z)]

c41 = −α2

ζ5
sinh(ζ5z) c42 = − zL

ζ25k
(
α1

d′1
− α2d1

d′1
)sinh(ζ1z) +

α2L

ζ25k
(cosh(ζ5z)− cosh(ζ1z))

It should be noted that, all the above mentioned matrices and elements are normalized

by Equation (5.62) while the superscript ? is omitted for brevity.

Appendix B

For the 3D axisymmetric problem as described in section 3, the analytical solutions for

temperature θ, vertical displacement uz, radial displacement ur, vertical stress σz and

radial stress σr in Laplace transform domain can be written as:

θ =

∫ ∞
0

Θ̂m
ξ S

m
ξ ξdξ (B1)

uz =

∫ ∞
0

Ûm
ξLS

m
ξ ξdξ (B2)



114 Bibliography

ur =

∫ ∞
0

Ûm
ξM

∂Smξ
∂r

ξdξ (B3)

σz =

∫ ∞
0

T̂mξLS
m
ξ ξdξ (B4)

σr = 2µ

∫ ∞
0

Ûm
ξM

∂2Smξ
∂r2

ξdξ +M

∫ ∞
0

(−ξ2Ûm
ξM +

∂Ûm
ξL

∂z
)Smξ ξdξ − α0

∫ ∞
0

Θ̂m
ξ S

m
ξ ξdξ (B5)

The expressions for Ûm
ξL, Û

m
ξM , T̂

m
ξL, T̂

m
ξM , Θ̂

m
ξ , Q̂

m
ξH can be found in Equations (5.50)- (5.53),

and then the numerical results can be successfully obtained with the numerical strategy

presented in section 3.

Appendix C

In this appendix we discuss the elements of the submatrix [X(z)]4×2 as introduced in

Pan (1990) for representing the effect of the temperature field to the displacements and

stresses. We would like to underline that Pan (1990) is actually a fabulous paper on the

topic, however, the non-zero elements of the submatrix [X(z)]4×2 are given in Equation

(16) incorrectly. The correct expressions for [X(z)]4×2 read:

X11 =
β4
x3
ex3z, X12 = −β4

x3
e−x3z, X41 =

β5
x3
ex3z, X42 = −β5

x3
e−x3z (C1)

This correction to the expressions in Equation (16) from Pan Pan (1990) has to be taken

in consideration in the following Equation (21) from the same paper. It has to be pointed,

that the incorrect expressions for the submatrix [X(z)]4×2 elements do not influence the

quality of the Pan’s paper and its essential contribution to the topic giving us the inspi-

ration how to treat the effect of heating on the deformation of the lithosphere. In the

context of this remark, equation (C1) may be regarded as an improving block to Pan’s

great building.
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58 (2016) Yang Yang

Analyses of Heat Transfer and Temperature-induced Behaviour in Geotechnics


	phdthesis
	Vorwort des Herausgebers
	Acknowledgements
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Introduction
	Scope and objectives
	Organization of the dissertation

	State of the art
	Application of a coupled THM models in geomechanics
	Analytical solutions for coupled THM model
	Analytical solutions for coupled THM model in porous media
	Analytical solutions for multilayered thermoelastic model
	Analytical solutions for heat transfer in geotechnics
	Analytical study for thermo-osmosis effect
	Analytical study for LTNE heat transfer


	Governing equations for IBVP formulated
	Introduction
	Heat transfer
	Fluid flow
	Constitutive mechanical relation

	Thermo-Osmosis Effect in Coupled THM Porous Medium
	Introduction
	Governing equations of coupled THM model fulfilling LTNE condition
	Constitutive equations
	Fluid flow
	Heat flow

	Solutions for cylindrical borehole in an infinite saturated poroelastic medium
	Mathematical model
	Boundary conditions
	Initial conditions
	Analytical solutions

	Parameter study
	Conclusions

	Analysis of Multilayered Thermoelastic Media
	Introduction
	Governing equations
	Governing equations for homogeneous thermoelastic media
	Vector surface harmonics
	Propagator matrix method
	Equivalent sources

	Analytical solutions for fixed and infinite boundary conditions
	Parameter study
	Application to heat emitting HLW repository
	Description of the problem
	Numerical results and discussions

	Conclusions

	Heat Transfer in a Geothermal Heat-Pump System
	Introduction
	Formulation of the problem and the governing equation
	Modelling of a vertical U-tube ground heat exchanger
	Two-stage open heat exchange system
	The passive step of the two-stage model
	The active step of the two-stage model

	Parameter study
	Conclusions

	Conclusions and recommendations
	Conclusions
	Works in the next step

	Bibliography
	Appendix

	CV_YangYang2
	Widmung Dissertation_Yang Yang(Dr.-Ing).pdf
	phdthesis
	Vorwort des Herausgebers
	Acknowledgements
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Introduction
	Scope and objectives
	Organization of the dissertation

	State of the art
	Application of a coupled THM models in geomechanics
	Analytical solutions for coupled THM model
	Analytical solutions for coupled THM model in porous media
	Analytical solutions for multilayered thermoelastic model
	Analytical solutions for heat transfer in geotechnics
	Analytical study for thermo-osmosis effect
	Analytical study for LTNE heat transfer


	Governing equations for IBVP formulated
	Introduction
	Heat transfer
	Fluid flow
	Constitutive mechanical relation

	Thermo-Osmosis Effect in Coupled THM Porous Medium
	Introduction
	Governing equations of coupled THM model fulfilling LTNE condition
	Constitutive equations
	Fluid flow
	Heat flow

	Solutions for cylindrical borehole in an infinite saturated poroelastic medium
	Mathematical model
	Boundary conditions
	Initial conditions
	Analytical solutions

	Parameter study
	Conclusions

	Analysis of Multilayered Thermoelastic Media
	Introduction
	Governing equations
	Governing equations for homogeneous thermoelastic media
	Vector surface harmonics
	Propagator matrix method
	Equivalent sources

	Analytical solutions for fixed and infinite boundary conditions
	Parameter study
	Application to heat emitting HLW repository
	Description of the problem
	Numerical results and discussions

	Conclusions

	Heat Transfer in a Geothermal Heat-Pump System
	Introduction
	Formulation of the problem and the governing equation
	Modelling of a vertical U-tube ground heat exchanger
	Two-stage open heat exchange system
	The passive step of the two-stage model
	The active step of the two-stage model

	Parameter study
	Conclusions

	Conclusions and recommendations
	Conclusions
	Works in the next step

	Bibliography
	Appendix

	CV_YangYang2


