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Vorwort des Herausgebers

Die vorliegende Promotion von Herrn Dr.-Ing. Kavan Khaledi ist im Bereich der Grund-

lagenforschung in der Felsmechanik angesiedelt. Sie entstammt aus einem Verbund-

forschungsvorhaben im Geotechnologie-2-Programm der DFG und des BMBF’s. In diesem

Forschungsvorhaben wurde die Speicherung von erneuerbarer Energie in Salzkavernen un-

tersucht. Dies dient dazu, die unterschiedlichen zeitlichen Verläufe von Energieangebot

und Energiebedarf im täglichen Rhythmus auszugleichen. Die Energie wird in Form

von komprimierter Luft bzw. komprimierten Wasserstoffs in die Salzkaverne eingepresst.

Die damit verbundenen Druckschwankungen im Speicher gehen mit entsprechenden Tem-

peraturschwankungen einher. Beide zusammen induzieren komplexe, thermisch mecha-

nisch gekoppelte Belastungspfade im Umfeld der Kaverne. Diese Kavernen weisen zudem

außerordentlich große Geometrien auf. Das Wirtsgestein Steinsalz hat auf Grund seiner

kristallinen Mikrostruktur ein sehr komplexes Materialverhalten. Von besonderer Be-

deutung sind die unterschiedlichen Phasen und die damit verbundenen Zeitskalen des

Kriechens, der damit einhergehenden Schädigung und die Ermüdung unter zyklischer

Beanspruchung. Im Unterschied zu gebräuchlichen saisonalen Energiespeichern von fos-

silen Brennstoffen in Salzkavernen handelt es sich im vorliegenden Forschungsvorhaben um

eine zyklische Beanspruchung alle ein bis zwei Tage. Des Weiteren ist der realitätsnahen

Abbildung des Primärspannungszustands durch das ursprüngliche Auffahren der Kaverne

durch Auslaugen besondere Beachtung zu schenken. Die Arbeit beinhaltet mit Kapitel 2

einen hervorragenden überblick über das Materialverhalten von Steinsalz. Korrekterweise

wird bereits hier ein Mehrskalen-Konzept verfolgt, dass sich durch die gesamte Arbeit

zieht: Verständnis des phänomenologischen Verhaltens von Steinsalz auf der makroskopis-

chen Skala durch Analyse der Mikrostruktur und deren Veränderung durch die Beanspruchun-

gen. Auf Ebene des Makro-Verhaltens wird zwischen den Belastungsarten Mechanik

und Temperatur und der Belastungsdauer kurz oder lang unterschieden. Detailliert

diskutiert wird die Bedeutung der Dilatanzgrenze, der induzierten Schädigung und des

Ermüdungsverhalten unter zyklischer Beanspruchung. Ausführlich werden existierende

Materialmodelle für Steinsalz diskutiert, die in ihrer Mehrzahl jeweils jedoch nur Einze-
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ii Vorwort des Herausgebers

laspekte des Gesamtverhaltens physikalisch korrekt wiedergeben. Ausführlich werden

die Initial- und Randbedingungen einer TM-Analyse einer Salzkaverne diskutiert. Dabei

kommt dem Auffahrprozess einer Kaverne, der mehrere Jahre dauert, eine besondere Be-

deutung zu, um den Initialzustand möglichst realistisch zu beschreiben. Bei der angestrebten

probabilistischen Zuverlässigkeitsanalyse kommt dem Bewertungskriterium eine beson-

dere Bedeutung zu. Detailliert werden unterschiedliche Möglichkeiten dazu bezüglich

des Versagens und der Gebrauchstauglichkeit diskutiert. In Kapitel 3 wird ein hierais-

cher Modellansatz zur Beschreibung des Materialverhaltens von Steinsalz unter den oben

genannten Randbedingungen formuliert. Ausgehend von einem empirischen Kriechmodell

wird als komplexeste Stufe ein visko-plastisches Kriechmodell mit Schädigung formuliert.

In Kapitel 6 werden die von Herrn Khaledi verwendeten und mehrheitlich selbst implemen-

tierten mathematischen Methoden zur anschließenden Systemanalyse eingeführt. Beson-

ders bei der verwendeten Metamodellstrategie und der damit verbundenen Sampling-

Strategie handelt es sich um einen originären Vorschlag von Herrn Khaledi. Daneben

werden Methoden der inversen Analyse und der globalen und lokalen Sensitivitätsanalyse

behandelt. Bei diesen Methoden ist ein präzises und effizientes Metamodell unabdingliche

Voraussetzung. Einen weiteren originären Beitrag in diesem Kapitel stellt die thermody-

namisch konsistente Herleitung der TM-Randbedingungen unter zyklischem Betrieb an

der Kontur der Kaverne dar. Die Arbeit von Herrn Khaledi bewegt sich international

auf höchstem Niveau der theoretischen und numerischen Felsmechanik. Die von ihm

vorgelegten Untersuchungen zum gekoppelten thermisch-mechanischen Konstitutivver-

halten von Steinsalz unter hochfrequenter (täglicher) zyklischer Beanspruchung sind in

diesem Umfang und in dieser Qualität nach Wissen des Gutachters einzigartig.

Bochum, September 2017 Tom Schanz
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Abstract

Underground storage of crude oil, liquid hydrocarbons and natural gas in salt formations

has relatively a long history. Nowadays, rock salt caverns integrated with renewable

energy sources have attracted wide attention as suitable places for storing compressed

air and hydrogen. Unlike the seasonal storage caverns, these caverns are subjected to

thermo-mechanical cyclic loads with relatively short periods. Therefore, it is essential to

investigate their stability and serviceability through adequate numerical simulations. To

achieve this goal, proper constitutive models are required to describe the material behavior

of rock salt under different loading conditions. In this thesis, an elasto-viscoplastic-creep

model is employed to predict the stress-strain relation around salt caverns during the

construction and the cyclic operation phases. The employed viscoplastic model is based

on a non-associated flow rule which accounts for compressibility, dilatancy and failure in

short-term experiments. To describe the long-term behavior of rock salt, the Norton-Hoff

creep model is modified by introducing a new creep potential surface. This modification

yields to a better description for the volumetric strain in long-term creep tests. On the

other hand, an energy-dependent damage parameter is added to the model to describe

the brittle behavior of rock salt in dilatancy domain. To accomplish this, the relationship

between stresses in the undamaged material and the damaged material is defined based

on the continuum damage mechanics definition of the effective area. This formulation

allows us to describe the strain softening in triaxial strength test, the tertiary creep in

long-term creep tests and the failure in cyclic loading tests. In the following, the material

parameters of the employed model are determined using the relevant experimental existing

in the literature. Then, in the numerical section, a number of examples illustrating the

simulation of salt caverns are presented. In these examples, several design criteria related

to the stability and the serviceability of salt caverns are discussed. Finally, based on the

performed investigations, conclusions regarding the performance of the storage caverns

are drawn, and some suggestions for future studies are given.
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Zusammenfassung

Die untertägige Speicherung von Rohöl, flüssigem Kohlenwasserstoff und Erdgas in Stein-

salzformationen hat bereits eine verhältnismäßig lange Historie. Heutzutage weckt aber

zunehmend auch die Nutzung von Salzkavernen zur Speicherung erneuerbarer Energien in

Form von Druckluft und Kohlenwasserstoff eine große Aufmerksamkeit. Im Unterschied

zu saisonalen Speicherkavernen sind diese Kavernen einer zyklischen thermo-mechanischen

Belastung bei vergleichsweise kurzen Intervallen ausgesetzt. Es ist daher von zentraler Be-

deutung, die Stabilität und Gebrauchstauglichkeit mittels angemessener numerischer Sim-

ulationen zu untersuchen. Um dieses Ziel zu erreichen, ist es erforderlich, das Materialver-

halten von Steinsalz bei unterschiedlichen Belastungsbedingungen durch geeignete Stof-

fgesetze zu beschreiben. Im Rahmen dieser Arbeit wurde ein elasto-viskoplastisches Mod-

ell verwendet, um die Spannungs-Dehnungs-Beziehungen im Kavernenumfeld während

des Herstellungsprozesses sowie während der zyklischen Betriebsphasen vorherzusagen.

Das verwendete Stoffgesetz basiert auf einer nicht-assoziierten Fließregel, welche Kom-

pressibilität, Dilatanz und Kurzzeitfestigkeit berücksichtigt. Um das Langzeitverhalten

von Steinsalz zu beschreiben, wurde das Norton-Hoff Kriechgesetz durch die Einführung

einer neuen Kriechpotentialfläche modifiziert, sodass die Volumendehnung von Langzeit-

Kriechversuchen besser abgebildet werden kann. Außerdem wurde das Stoffgesetz um

einen energieabhängigen Schädigungsparameter ergänzt, um das spröde Verhalten von

Steinsalz im Dilatanzbereich beschreiben zu können. Diese Formulierung ermöglicht

es, das Entfestigungsverhalten in triaxialen Festigkeitversuchen, tertiäres Kriechen in

Langzeit-Kriechversuchen sowie das Materialversagen in zyklischen Belastungsversuchen

abzubilden. Im Folgenden werden die Materialparameter des verwendeten Stoffgesetzes

auf Grundlage relevanter, bereits existierender Versuchsdaten aus der Literatur ermit-

telt. Im numerischen Abschnitt werden einige Beispiele dargestellt, die die Simulation

von Salzkavernen veranschaulichen. Anhand dieser Beispiele werden unterschiedliche

Designkriterien bezüglich der Stabilität und der Gebrauchstauglichkeit von Salzkaver-

nen diskutiert. Abschließend werden, basierend auf den durchgeführten Untersuchun-

gen, Schlussfolgerungen zur Leistungsfähigkeit der Speicherkavernen getroffen und einige

Ansätze für zukünftige Forschungsschwerpunkte vorgeschlagen.
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1 Introduction

1.1 Background

Rock salt formations can be found in large volumes in different parts of the world. More-

over, rock salt has some unique features such as low permeability, solubility in water

and adequate thermal and mechanical properties which make it distinguished from other

rock materials. Because of these reasons, rock salt caverns have been recognized since

almost seven decades as ideal places for storing energy carriers such as crude oil, light

hydrocarbons and natural gas. Salt caverns are created using the solution-mining tech-

nique. In this technique, fresh water is continuously injected into the rock salt medium

through leaching pipes and the mixture of salt and water (brine) is transferred to the

ground surface. In this way, an underground cavity with the desired shape and storage

volume can be formed. The first salt caverns were constructed in Canada during World

War II. Later, in the early 1950’s, the cavern construction became more popular in North

America and several European countries. Nowadays, hundreds of such caverns exist in

different parts of the world such as United States, Canada, France, Germany and China

Thomas & Gehle (2000). For example, about 554 caverns were used to store natural gas

around the world by the end of 2012 Yang et al. (2015). Fig. 1.1 depicts the distribu-

tion of salt caverns in Germany which are used to store crude oil, light hydrocarbons

and natural gas. On the other hand, during the recent years, renewable energy sources

such as wind and solar energy have gained wide attention because of their low pollutant

and greenhouse gas emissions. However, these sources have an uncontrollable nature and

produce electricity intermittently. Due to this fact, the integration of renewable energy

sources into the electricity power grid has become a new technical challenge in the energy

sector. Storing energy in the form of compressed air and hydrogen inside the underground

caverns is a promising technique to overcome this problem and also to meet the energy

demand fluctuations in electricity power grids. The two operational Compressed Air Stor-

age Systems (CAES) i.e. the 290 MW Huntorf plant in Germany with a total storage

volume of 300000 m3 and the 110 MW MacIntash plant in USA with a storage space

1
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Germany (status 31.12.2015) Erdöl und Erdgas in der Bundesrepublik Deutschland 2015
(2016)

of 500000 m3 have both used the solution-mining technique to construct their caverns

Cortogino et al. (2001). Fig. 1.2 is a schematic representation of a salt cavern in a CAES

plant. In general, a CAES plant consists of several components, i.e. (1) motor (2) com-

pressor (3) after-cooler (4) underground compressed air storage cavern (5) recuperator (6)

gas turbine and (7) generator. As depicted in this figure, the electrical power from the

renewable sources is used by a motor to run the compressor and compress the air to a cer-

tain level. The compressed air is then cooled via after-cooler and its temperature reaches

to a predefined value prior to storage. Thereafter, the air is injected to the underground

salt cavern for storage purposes. During peak periods, when the electricity demand ex-

ceeds the supply, the pre-compressed air from the storage cavern is preheated trough a

heat recuperator, then mixed with natural gas in a combustion chamber and expanded

through a coupled turbine-generator to generate electricity. A typical salt cavern can be

subjected to different loading conditions during the operation time. In other words, the

thermo-mechanical loads applied to the rock salt cavern have various changes throughout
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Figure 1.2: The main components of a compressed air energy storage plant: (1) motor (2)
compressor (3) after-cooler (4) underground compressed air storage cavern (5) recuperator
(6) gas turbine and (7) generator

the cavern’s operating life. Additionally, depending on the storage product, salt caverns

can operate with daily, monthly or yearly cyclic periods. Therefore, it is essential to in-

vestigate the stability and the serviceability of underground storage systems. Obviously,

accurate design of these underground cavities requires adequate numerical simulations

which take into account the most important processes that could affect the performance

of the system.

1.2 Motivation and objectives

As mentioned, in a CAES plant, the extra electricity during off-peak periods of consump-

tion is used to store the air into an underground cavern excavated in rock salt. Later,

during the peak of energy demand, the cavern is discharged to generate electricity through

a gas turbine. During this process, the rock salt surrounding the cavern is subjected to

different loading conditions. In other words, the thermo-mechanical loads applied to the

rock salt cavern have various changes throughout the cavern’s operating life. Moreover,

these types of caverns may operate with daily or hourly cyclic periods. That means, the

pressure and temperature applied to the inner boundary of salt cavern have relatively

rapid changes in comparison to the seasonal storage caverns which are used for storing
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natural gas. In order to achieve a reliable geotechnical design, the stress-strain response

of rock salt under such loading condition has to be identified and predicted. For this

reason, it is essential to investigate the effect of thermo-mechanical cyclic loading on the

stability and the serviceability of storage systems. Obviously, accurate design of these

underground cavities requires adequate numerical simulations which take into account

the most important processes that could affect the performance of the system. Further-

more, the computational model relies primarily on the governing constitutive model for

predicting the behavior of rock salt.

The objectives of the investigation are:

• To review studies and models related to the rock salt and its applications summa-

rizing the progresses and deficiencies.. The thesis also intends to define key terms,

definitions and terminology related to this field of study and provide an overview

for existing findings and recent major advances.

• To develop/adopt/modify a proper constitutive model for rock salt which is able

to describe the short/long-term behavior of rock salt in different loading conditions

such as constant loading, monotonic loading and cyclic loading.

• To integrate the employed constitutive model into the finite element program Code-

Bright.

• To identify the required material/model parameters using existing experimental

data in literature.

• To develop mathematical and numerical models for the simulation of cyclic operation

in underground storage caverns with relatively short loading and unloading periods.

• To investigate the stability and the serviceability of salt caverns under different

loading scenarios.

1.3 Layout of the thesis

The thesis is composed of eight chapters. After the introductory chapter, the literature

review is presented in Chapter. 2. The review begins with the studies related to the exper-

imental observations including the micro-structure and the phenomenological behavior of

rock salt. Then, it continues with the constitutive modeling of rock salt and the numerical

simulation of salt caverns.

Chapter. 3 introduces the structure of three employed constitutive models for modeling of
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rock salt behavior. This chapter is divided into three sections. The explanation regarding

the constitutive modeling of rock salt begins with the BGRa creep model in Section. 3.2.

Then, it follows by the viscoelastic model LUBBY2 in Section. 3.3. The explanations

regarding the employed viscoplastic-creep-damage model are given in Section. 3.4. In

Chapter 4, the general procedure to implement the viscoplastic-creep-damage model in a

standard finite element code is presented. The main objective in this chapter is to pro-

vide an implicit scheme to update the stress tensor and other constitutive variables. In

Chapter. 5, the material parameters related to the implemented constitutive models are

identified using existing experimental data in literature. Moreover, a parametric study is

carried out in this chapter to assess the performance of the employed viscoplastic-creep-

damage model in different loading conditions. In addition to this, some of the key factors

influencing the model responses are introduced and their effects are qualitatively repre-

sented. To achieve this goal, the performance of the viscoplastic-creep-damage model in

triaxial quasi-static tests, long-term creep tests and cyclic loading tests is numerically

investigated. Chapter. 6 introduces the applied computational tools in this thesis. A

number of investigations including thermodynamic of gas inside the cavern, metamodel-

ing, global sensitivity analysis and parameter identification have been conducted in this

thesis. These studies are not directly related to the previous chapters. However, they

have been used as computational tools to analyze the results obtained from numerical

simulations. Therefore, they have been briefly introduced in Chapter. 6. Then, in Chap-

ter. 7, the numerical simulation of salt caverns is carried out. Three numerical examples

have been included in this chapter. The first example is related to the modeling of salt

cavern under constant mechanical loading. While, the second and the third examples

deal with the modeling of cyclic loading condition. The stability and the serviceability of

underground storage caverns are discussed in these numerical examples. Finally, the last

chapter i.e. Chapter. 8 presents the conclusions drawn based on the results obtained in

the the foregoing chapters, and suggestions and recommendations for further studies in

this field are given.





2 State of the art

The overall structure of this review has been summarized in Fig. 2.1. As shown in this fig-

ure, the review begins with experimental observations which include the micro-structure

and the phenomenological behavior of rock salt. The micro-structural behavior of rock

salt is explained in Section. 2.1. The dominant deformation mechanisms in the lattice

structure of rock salt are explained in this section as well. Then, in Section. 2.2, the

phenomenological behavior of rock salt under different loading conditions is described.

That means, the influencing factors on the stress-strain relation in different testing con-

ditions such as quasi-static triaxial test, long-term creep test and cyclic loading test are

discussed. Beside the experimental investigations, constitutive modeling of rock salt and

predicting material behavior with sufficient accuracy and confidence have been the sub-

ject of research for many years. Therefore, some of the existing constitutive models and

their features are listed in Section. 2.3. Finally, in Section. 2.4, the design requirements

and the important issues related to the modeling of salt caverns are outlined.

2.1 Micro-structure of rock salt

Natural rock salt is a polycrystalline material with an average density around 2000 kg/m3.

Each crystal grain of salt is made of several smaller parts known as sub-grains Hunsche

& Hampel (1999). The grain size may range from less than 1 mm to several dm. Salt

grains are connected to each other via grain boundaries (i.e. high-angle boundaries) while

the sub-grains are distinguished from each other by sub-grain boundaries (i.e. low angle

boundaries). Microscopic observations show that rock salt consists of grains of halite

(NACL) which contain impurities, secondary mineral phases and fluid inclusions trapped

in grain boundaries or in pores Urai & Spiers (2007). In this section, the main processes

involved in the deformation mechanism and the effect of micro-structure changes on the

macroscopic behavior are explained as discussed in literature (state of the art).

7
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Figure 2.1: Three main steps to analyze the energy storage caverns

2.1.1 Defects in crystalline structure

A lattice is a periodic arrangement of atoms in a crystal. Fig. 2.2a is a schematic rep-

resentation of an ideal crystal without any defect. In contrary to the ideal crystals, the

lattice structure of natural rock salt contains imperfections or defects. A defect is defined

as any disturbance in the regular arrangement of the lattice. Lattice defects have a large

influence on the inelastic behavior and they contribute to the mechanical properties of

rock salt. Depending on their dimensions, the following defects may be presented in a

lattice structure Hirth & Lothe (1982):

• Point defects (0-dimensional defects): these types of defects are related to the lack

of individual atoms (vacancies) or the existence of foreign atoms (impurity) in the

lattice structure (see Fig. 2.2b).

• Linear defects (1-dimensional defects): these defects are commonly known as “dislo-

cations”. Generally, the term “dislocation” refers to the one dimensional disruptions

in the regular arrangement of the atoms in a real crystal. There are two basic types
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of linear defects i.e. (1) edge dislocations and (2) screw dislocations. In fact, many

linear defects in lattice structure are a combination of both edge and screw disloca-

tions (i.e. mixed dislocations). Edge dislocations are generated if an extra half layer

of atoms lies between two parallel layers. Fig. 2.2c shows how the inter-atomic bonds

are affected by an extra half layer of atoms. On the other hand, screw dislocations

are formed when the lattice itself is sheared. Then, a part of lattice is offset relative

to other parts. Fig. 2.2d is a simple visualization of screw dislocation generated by

shear stress. Within the creep process, edge dislocations move in directions parallel

to their dislocation line, but the screw dislocations move in directions perpendicular

to their dislocation lines. It has been well accepted that the creep deformation of

rock salt in a wide range of stress and temperature is carried by moving disloca-

tions. It should be noted here, that existence of point defects such as impurities and

vacancies in lattice structure can significantly change the resistance of the material

against the creep deformation. Depending on the type of the impurity atoms, the

point defects can slow down or even stop the movement of free dislocations and, in

this way, play an important role within the creep process.

• Planar defects (2-dimensional defects): which are interfaces between homogeneous

regions of the rock salt. Planar defects include grain boundaries and external sur-

faces (see Fig. 2.2e).

• Bulk defects (3-dimensional defects): these types of defects have bigger scales than

the above-mentioned imperfections. The term “bulk defect” refers to a spatial

disorder in the lattice volume which results in the creation of pores and micro-cracks

(see Fig. 2.2e).

Figs. 2.3a and 2.3b demonstrate the Scanning Electron Microscope (SEM) images

of grain boundaries, sub-grain boundaries and free dislocations.

2.1.2 Deformation map

Rock salt exhibits different microscopic responses under the influence of stress and tem-

perature. The effect of these influencing factors cannot be well understood without con-

sidering the relevant deformation mechanisms. The dominant creep mechanisms under

different stress and temperature conditions can be represented by using a deformation

map. In this map, the important processes acting during the creep deformation are clas-

sified and the governing mechanisms are depicted. Although the interaction between these

mechanisms is complicated, in most cases it is assumed that one mechanism is dominating.
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Figure 2.2: Schematic representation of (a) ideal crystal; (b) point defects; (c) linear
defect, edge dislocation; (d) linear defect, screw dislocation; (e) planar defect (e.g. grain
boundary) and bulk defect (e.g pores)
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Figure 2.3: The Scanning Electron Microscope (SEM) images of the micro-structure of
rock salt; (a) sub-grain boundaries (black arrows) versus free dislocations (yellow arrows)
Senseny et al. (1992); (b) grain boundaries (black arrows) versus sub-grain boundaries
(yellow arrows) Friedman et al. (1984)

Essentially, such deformation maps (normalized shear stress vs. homologous temperature)

are derived from experimental observations. The first attempts to prepare a deformation

map for the creep of rock salt were carried out by Heard (1972) followed by the work of

Verrall et al. (1977). In the same framework, Munson (1979) presented a deformation

mechanism map for the natural rock salt from Waste Isolation Pilot Plant (WIPP) site

located in New Mexico. Fig. 2.4 shows the obtained map by Munson for a temperature

range less than half of the melting temperature which is the probable working condition in

the energy storage applications. The rectangle 25-200 ◦C by 5-20 MPa in this figure shows

the feasible domain inside which the laboratory tests can be performed. In this domain,

the creep deformation is mainly carried by the movement of dislocations. In other words,

the creep deformation rate in this range depends on the rate of the dislocation generation

and the dislocation recovery. Munson did not provide any definition for the active mech-

anisms in low stress ranges (i.e. less than 5 MPa). Later, Urai et al. (1986) introduced

another creep mechanism which plays the governing role in this range of stress. According

to his findings, the solution-precipitation creep is the most important mechanism which

controls the creep deformation in very small strain rates. Another terminologies can be

found in the literature for this mechanism such as recrystallization process Senseny et al.

(1992), pressure solution Urai & Spiers (2007); Hickman & Evans (1991); Li et al. (2012),

fluid-assisted grain boundary migration Carter & Hansen (1983); Desbois et al. (2012),

fluid-assisted creep Olivella & Gens (2002) and water-enhanced creep Cristescu & Hun-
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sche (1998). The following sections explain the above-mentioned mechanisms more in

detail.

2.1.3 Deformation induced by dislocation movement

When rock salt has an adequate confining pressure and it is subjected to a constant load,

the existing dislocations in lattice start moving with a certain velocity. The movement

of dislocations results in a time–dependent ductile deformation in the rock sample. This

time-dependent deformation is called “creep” and it is strongly dependent on the envi-

ronmental factors such as temperature and humidity. Depending on the magnitude of the

applied stresses and the temperature, creep in the rock salt may occur under different

mechanisms. If the stress and the temperature are in the feasible range of laboratory

conditions shown in Fig. 2.4, the creep deformation is predominantly carried by free dis-

locations. In contrary to the solution precipitation mechanism in which the deformation

occurs along the grain boundaries, the dislocation creep process take place inside the

crystal lattice of salt grains without any visible change in the grain orientation. Imme-

diately after applying the load, the shear stresses created inside the lattice generate new

dislocations or force them to move inside the grain through “glide mechanism”. That

means, the edge and screw dislocations move on certain crystallographic planes which do

not bring together ions with the same charge. Subsequently, the density of free disloca-

tions increases inside the grains. Figs. 2.5a and 2.5b illustrate the glide mechanism for

edge and screw dislocations, respectively. However, the movement of dislocations can be

stopped when they encounter the existing obstacles in the lattice structure. Impurities,

dislocation pile-ups and grain boundaries are the obstacles which can retard the move-

ment of dislocations. At this situation, the density of dislocations increases in sub-grain

structure and the resulting dislocation network causes that the average velocity of moving

dislocations decreases Cristescu & Hunsche (1998). The increase of dislocation density

produces an increasing resistance against deformation which is known as “strain hard-

ening”. Due to the strain hardening, the creep deformation rate reduces and forms the

“transient” part of creep. At the same time, rearrangement of sub-grain structure leads to

the recovery of dislocations in other parts of the sub-grain. The recovery process in rock

salt is associated with “cross slip” and “climb” processes. During the recovery process, the

increasing strain energy caused by dislocation pile-ups is released. Cross slip mechanism

is a process in which two screw dislocations join each other in order to skip an obstacle.

In this way, the gliding dislocations find a new path for movement. Cross slip mechanism

can occur in a wide range of temperature and it is the dominant recovery mechanism at



2.1 Micro-structure of rock salt 13

T/Tm

25
 °

C

20
0 

°C

0.2 MPa

5 MPa

20 MPa

-1

-2

-3

-4

-5

-6

-7
0 0.2 0.4 0.6

L
og

 ( 
   

/G
)

Dislocation Glide

Dislocation 
Climb

Solution
Precipitation

Tm (1077 ° K)=Melting temperature

G= Shear modulus (10 GPa)

= Deviatoric stress

Laboratory conditions 

Expected field conditions 

Average grain size= 3 mm

q

q

Figure 2.4: Deformation map of rock salt after Munson (1979), the solution precipitation
creep was added later to this map by Urai et al. (1986)

relatively low temperatures. However, it has been found that it does not depend strongly

on temperature Senseny et al. (1992). Fig. 2.6a is a schematic representation of cross slip

mechanism which yields to the dislocation recovery. For high temperatures, the climb

mechanism is the important recovery mechanism. As explained, the mobility of gliding

dislocations is retarded when they encounter obstacles. Climb is a recovery process by

which two edge dislocations can move perpendicular to their gliding plane and connect

each other. This process has been shown in Fig. 2.6b. During the dislocation creep pro-

cess, new sub-grains may form in the halite grain. The average diameter of the generated

sub-grains is correlated with deviatoric stress Urai & Spiers (2007); Carter et al. (1993). If

the loading conditions are kept constant, the number of dislocations which are recovered

increases and finally an equilibrium state is reached between the dislocation generation

and the dislocation recovery. Afterward, the rate of deformation remains constant and

the “steady-state” creep is developed. The steady-state creep rate is dependent on stress

state and temperature, if the structure is not changed, i.e. by dilatancy, impurities or

recrystallization Cristescu & Hunsche (1998).

2.1.4 Deformation induced by solution precipitation

As shown in Fig. 2.4, the creep deformation in very low deviatoric stresses (i.e. 1-5 MPa)

is controlled by solution precipitation process. Under such condition, deformation occurs
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along the grain boundaries (not inside the grain). In this mechanism, salt is dissolved

in the liquid phase existing at grain boundaries and it migrates from zones of stress

concentration to zones of lower stress level. Finally, precipitation of salt in low stress

zones results in a macroscopic deformation. The solution precipitation mechanism has

been schematically shown in Fig. 2.7. This mechanism has been extensively investigated

by Spiers et al. (1986, 1988). The following factors are considered as prerequisite for this

mechanism to take place:

• Rock salt should be subjected to very low deviatoric stresses. Otherwise, other

mechanisms which cause inter-granular deformation are activated.

• This process takes place along the grain boundaries. Therefore, existence of enough

brine at the boundaries is necessary. The driving force of this mechanism is the

difference of chemical potential across grain boundaries Urai & Spiers (2007).

• Another important factor for this mechanism is time. The strain rate caused by

solution precipitation mechanism is less than 10−10 s−1. Therefore, its effect on

deformation becomes more significant in long time scales.

The long-term deformation of rock salt would be underestimated if the governing equations

which describe other creep mechanisms (i.e. dislocation creep) are extrapolated in this

range of stress Urai et al. (1986). Solution precipitation creep can be also considered as

a recovery process because it contributes to the reduction of stored energy of dislocations

at grain boundaries.
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Figure 2.7: Schematic representation of solution precipitation creep Olivella & Gens (2002)
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2.1.5 Deformation induced by inter-crystalline micro-cracking

At low confining pressures and high deviatoric stresses, rock salt exhibits a transition from

ductile to brittle behavior. In this range of loading, the inter-crystalline micro-cracking,

grain rotation and inter-granular slip are important deformation processes (see Fig. 2.8).

Opening of micro-cracks results in volume increase or dilatation of rock salt. Under such

conditions, the “tertiary creep” may occur due to the inter-crystalline micro-cracking.

Numerous experiments on rock salt samples performed by several researchers show that

there exist a zone in stress space whose boundary separates the ductile behavior from the

brittle response. More details regarding the consequences of transition from the ductile

to the brittle behavior are presented in Section. 2.2.2.2.

2.2 Phenomenological behavior of rock salt

The macroscopic behavior of rock salt in laboratory has been the subject of research

for many years. The main focus of these types of studies lies on the observation and

the interpretation of material response of rock salt under different thermo-mechanical

conditions. The current section presents a review on different phenomenological aspects

related to the rock salt behavior.

2.2.1 Elastic behavior

Rock salt has been considered as an isotropic material by most researchers. For example,

Wawersik & Hanuum (1980) performed a hydrostatic test to investigate the isotropic

Grain boundary
Opening of micro-cracks

Dilatancy and damage

Figure 2.8: Schematic representation of inter-crystalline micro-cracking
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behavior of rock salt. The volumetric strain obtained in this test was 3 times the axial

and the lateral strains (i.e. εvol = 3ε1 = 3ε3). The agreement of 3ε1 and 3ε3 indicates that

the rock salt is mechanically isotropic. With this assumption, the instantaneous reversible

response can be described by two elastic parameters using Hooke’s law:

ε̇elij =
1

2G
σ̇ij +

(
1

9K
− 1

6G

)
İ1δij, (2.1)

where σij is the ijth component of the stress tensor and I1 denotes the first stress invariant.

δij is the Kronecker delta. In addition, K and G are bulk and shear moduli, respectively.

There are two common ways to determine the elastic parameters, i.e. (1) dynamic method

and (2) static method. In the dynamic method, the travel time of the longitudinal P-

wave and the transverse S-wave propagating through the rock salt sample are measured.

Accordingly, the bulk modulus K and shear modulus G are back calculated using the

following equations Matei & Cristescu (2000):

K = ρ

(
v2
p −

4

3
v2
s

)
, G = ρv2

s (2.2)

where, ρ is the density of salt; vp and vs denote the velocity of the P- and S-waves, re-

ceptively. With the aid of this technique, the structural changes in rock salt sample due

to micro-cracking, dilatancy can be detected as well (e.g see Popp & Kern (1998)). The

elastic parameters may change when micro-cracks are generated in rock sample. In other

words, the elastic parameters for damaged rock salt may depend on a damage parameter

which describes the micro-cracking history evolution Cristescu & Gioda (1994). In the

static method, the slopes of the stress-strain curves during unloading/reloading cycles

are determined. Having these slopes, the elastic parameters and their variations can be

obtained. However, the two methods do not necessary lead to same values for the elastic

parameters Matei & Cristescu (2000). The dependency of elastic parameters on confining

pressure was investigated by Hansen et al. (1984). They determined the elastic parameters

of ten different rock salt samples taken from different sites and different depths. Obtained

results from reloading/unloading cycles in the stress-strain curves showed that the elastic

parameters were site independent (i.e. independent of applied confining pressure). Sim-

ilar conclusions regarding the independent relation between the elastic parameters and

the confining pressure were reported before in Höfer & Thoma (1968). However, the de-

pendency of elastic parameters on stress state is a subject which has not been extensively

investigated. Likewise, rare investigations have been conducted to understand the rela-

tion between temperature and elastic parameters. Wawersik & Hanuum (1980) reported
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that the pressure and the temperature do not alter the elastic parameters. In contrary,

Sriapai et al. (2012) showed that, the elastic shear and bulk moduli decrease linearly with

increasing temperature and Poisson’s ratio tends to remain constant. The loading rate is

another factor which may influence the elastic parameters. Fuenkajorn et al. (2012) per-

formed a series of triaxial tests on specimens from Maha Sarakham formation considering

different loading rates (ranging from 0.001 to 10 MPa/s). The elasticity parameters in

these tests were obtained using the tangent of the stress-strain curves at 40% of failure

stress. As reported in Fuenkajorn et al. (2012), the elastic modulus (E) of salt shows

slightly increase with increasing the loading rate and Poisson’s ratio tends to be inde-

pendent of the loading rate. Similar results have been reported by Liang et al. (2011).

2.2.2 Rock salt behavior in short-term triaxial strength tests

The main objective of this section is to explain the mechanical behavior of rock salt in

short-term triaxial strength tests (i.e. quasi-static tests). The quasi-static tests can be

performed in two ways; i.e. (1) strain-controlled (2) load-controlled. When a rock salt

sample is tested under a short-term conventional triaxial loading (either compression;

σ1 > σ2 = σ3 or extension; σ1 < σ2 = σ3) with constant strain rate, the obtained

stress-strain curve indicates five regions of deformation behavior. Fig. 2.9 represents a

typical stress-strain curve obtained for rock salt in a triaxial strength test. The changes of

volumetric strain versus axial strain has been shown in this figure, as well. The first region

(i.e. O-A) shows a steep linear curve, which corresponds to the elastic regime. According

to Alkan et al. (2007) and Liang et al. (2011), two types of deformation are expected

in this range of loading. The first one is due to the closure of pre-existing micro-cracks

and the second is the purely elastic deformation which is completely recoverable. The

second region (i.e. A-B) exhibits the transition from elastic to plastic deformation. Point

B, in this figure, indicates the onset of dilation. That means, the volume of rock salt

sample gradually increases due to the propagation of micro-cracks. Additionally, a slow

transition from ductile to brittle behavior takes place in this range of loading. In the third

region (i.e. B-C), the ductile-brittle transition and the micro-crack generation continue

up to point C. As seen, in this region, the curvature of the stress-strain curve increases

with deformation, which is due to the strain hardening mechanism (i.e. increasing the

density of dislocations) explained in Section. 2.1.3. At about 80% of peak stress, i.e. at

point C, a critical stress condition is reached Liang et al. (2011). Because, at this level

of loading, the opening of micro-cracks accelerate significantly and the damage growth
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Figure 2.9: Typical responses observed in short-term strength tests; stress vs. strain (solid
line) and volumetric strain vs. axial strain (dashed line)

becomes significant. Finally, at the end of fourth region (i.e. C-D), the peak strength is

reached. At this point, the rock salt sample cannot withstand loading and exhibits brittle

failure accompanied by strain softening behavior. Therefore, the fifth region starts to

develop and the stress drops down from the peak value to the residual strength at point

E.

2.2.2.1 Short-term failure boundary

Studying the short-term failure conditions obtained in quasi-static loadings is essential

for characterizing the properties of rock salt and to develop the required constitutive

models. The mechanical behavior of rock salt in short-term triaxial strength tests has been

investigated by several researchers (e.g. Senseny et al. (1992); Cristescu & Hunsche (1998);

Wawersik & Hanuum (1980); Höfer & Thoma (1968); Liang et al. (2007); Langer (1982);

Fuenkajorn & Phueakphum (2010); Hunsche (1992); Sriapai et al. (2013)). Generally, in

these experiments, different confining pressures have been applied to rock salt samples

in a triaxial conventional testing apparatus. Then, the axial load/strain changes with a

certain rate until the peak strength is reached. The strain rate in strain-controlled tests is

commonly more than 10−6 s−1. Having the peak stresses for different values of confining

pressures, a short-term failure boundary can be defined in the stress space as illustrated
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Figure 2.10: Stress-strain curves for different confining pressures (left); stress-paths in
triaxial compression experiment and the short-term failure boundary (right); experimental
data from Günther & Salzer (2007)

in Fig. 2.10. As seen, the failure boundary of rock salt is highly dependent on the applied

confining pressure. In other words, the compressive strength of rocks generally increases

with increasing confining pressure. For low confining pressures, rock salt becomes more

brittle and the peak strength is reached faster. The pressure dependence of rock strength

has been experimentally studied by many researchers and different failure boundaries

have been defined for rock salt in the literature. Some of the existing failure boundaries

are listed in Table 2.1. Fig. 2.11a is an illustration for some of the rock salt failure

boundaries in I1−
√
J2 space. The test data for rock salt strength in triaxial compression

test obtained by Hunsche (1992) has been shown in this figure as well. Beside confining

pressure, several important factors such as temperature, stress path, load/strain rate

may influence the behavior of rock salt in short-term tests. These influencing factors are

discussed in the following sections.

2.2.2.2 Long-term failure boundary/ dilatancy boundary

As shown in Fig. 2.9, the plastic volumetric strain curve has a turnover point at which

the compression changes to dilation. Numerous experimental investigations performed by

many scholars show that there is a band in the stress space which separates the com-
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Table 2.1: Some of the existing short-term failure boundaries of rock salt in the literature

Model Equation Description

Mohr-Columb τ = c+ p tanϕ τ and p are the octahedral shear stress and the
mean stress, respectively. c is the cohesion and
ϕ is the friction angle Liang et al. (2007); Ma,
Liu, Fang, Xu, Xia, Li, Yang & Li (2013).

Modified Mohr-
Columb

σ1 = σc +

(
1 +

σm − σc
σφ − σ3

)
σ3 σ1 and σ3 are the first and the third principal

stresses, respectively. σc is the uniaxial com-
pression strength. σm and σφ are two model pa-
rameters which determine the maximum possible
strength and the curvature of the failure bound-
ary, respectively Minkley & Muehlbauer (2007).

Hoek-Brown σ1 = σ3 + σc

√
m
σ3
σc

+ s σ1 and σ3 are the first and the third principal
stresses, respectively. σc is the uniaxial com-
pression strength. m and s are two dimension-
less parameters related to the characteristic of
the rock Ma, Liu, Fang, Xu, Xia, Li, Yang & Li
(2013).

Generalized
Hoek-Brown

σ1 = σ3 + σc

(
mb

σ3
σc

+ sb

)a
This is an improved version of Hoek-Brown cri-
terion. Parameters mb, sb and a are not con-
stant anymore. These parameters can change
as a function of damage parameter d. Param-
eter d is a factor which reflects the degree of
disturbance of rock masses, varying from 0 for
undisturbed insitu rock masses to 1 for severely
disturbed rock masses Ma, Liu, Fang, Xu, Xia,
Li, Yang & Li (2013).

Drucker-Prager
√
J2 = αI1 + k J2 is the second invariant of deviatoric stress ten-

sor and I1 is the first invariant of stress tensor.
α and k are model parameters Ma, Liu, Fang,
Xu, Xia, Li, Yang & Li (2013).

Cristescu et al. p = rτ + sτ6 − τ0 τ and p are the octahedral shear stress and
the mean stress, respectively. m, r and τ0 are
model parameters Cristescu & Hunsche (1998);
Cristescu (1987); Cristescu & Gioda (1994).

Desai et al.
√
J2 =

√
γ (exp (β1I1)− β cos (3θ))

mvI1 J2 is the second invariant of deviatoric stress ten-
sor. I1 is the first invariant of stress tensor. θ is
the Lode’s angle. γ, β1 and β are model parame-
ters Desai & Zhang (1987); Desai & Varadarajan
(1987).

Hou/Lux q = a0β
TC(σ3)kβ(σ3, θ) q is the deviatoric stress i.e. , q =

√
3J2. a0

is model parameter. βTC(σ3) and kβ(σ3, θ) are
two functions dependent on the minimum prin-
cipal stress σ3 and the Lode’s angle θ Hou & Lux
(1998); Hou (2003).

Fuenkajorn τ = apb(τ̇)cp
d

This model describes the dependecy of failure
boundary on the loading rate. τ and p are the
octahedral shear stress and the mean stress, re-
spectively. a, b, c and d are model parameters.
τ̇ is the shear stress rate Fuenkajorn & Phueak-
phum (2010).
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pressive behavior of rock salt from the dilative response (e.g. see Cristescu & Hunsche

(1998); Alkan et al. (2007); Hunsche (1992); Sambeek et al. (1993); DeVries et al. (2000);

Czaikowski (2011)). Accordingly, under a given confining pressure, the plastic volumetric

strain shows a transition from compression to dilation with the increase of applied devia-

toric stress. Although the compression and dilatancy zones are separated though a band,

it is common to use a boundary to describe this transition. This boundary is known as

“dilatancy boundary” or “long-term failure boundary”. When the stress states is in the

compressibility zone (i.e., below the dilatancy boundary), a time-dependent ductile de-

formation without any visible macroscopic cracking is observed. For this reason, critical

conditions such as crack propagation and brittle failure do not occur below the dilatancy

boundary. In contrary, with reducing the confining pressur or increasing the deviatoric

stress, the stress state may lie in the dilatancy zone (i.e., beyond the dilatancy bound-

ary). In this case, inter-crystalline micro-cracking, grain rotation and inter-granular slip

become the dominate deformation mechanisms. These processes result in dilatancy or

volume increase of salt. Dilatation and interconnection of micro-cracks have a number of

consequences such as: rapid increase in permeability, tertiary creep or long-term failure

Hunsche & Hampel (1999). For this reason, the onset of salt dilation is regarded as a

crucial factor for the long-term design of storage caverns. However, accurate determina-

tion of dilatancy boundary in experiments is technically a challenging task. The following

methods are normally used to obtain the onset of dilatancy in experiments.

• The axial and lateral strains are directly measured during the test. Having the

strain components, the volumetric strain is obtained as εvol = ε1 + ε2 + ε3.

• In some triaxial test devices, the lateral stress is produced through the hydraulic

pressure of a confining fluid. In this case, a dilatometer system is used to measure

the volumetric strain of rock salt sample based on the changes of fluid level in the

triaxial cell (e.g see Wawersik & Hanuum (1980); Roberts et al. (2015))

• The onset of dilatancy and the growth of micro-cracks can be detected by the passive

“Acoustic Emission” technique (AE). At the onset of dilatancy, the inter-granular

slip takes place. As a consequence, the acoustic waves (sound) are generated due to

the opening of micro-cracks. Then, the acoustic waves travel through the sample,

and they are sensed and recorded by appropriate devices. In this way, the onset of

dilatancy can be identified. This method is called passive, because it only detects

events naturally occurring within the specimen Bauer et al. (2011); Zhang, Liang,

Li, Xu & Zhao (2015).
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• The onset of dilatancy and the micro-cracking can be measured by an active tech-

nique known as “Ultrasonic Wave Velocity”. In this technique, a source (located

out of the sample) is used to generate the waves. Then, the longitudinal P-wave

or the transverse S-wave propagating through the rock salt sample are sensed and

recorded. In this way, the changes of rock salt structure, the development of damage

and the growth of cracks can be monitored Popp & Kern (1998); Popp et al. (2001);

Schulze et al. (2001).

Fig. 2.11b shows some of the dilatancy boundaries defined for rock salt in I1−
√
J2 space.

As it is seen, the dilatancy boundary of rock salt has a significant dependency on the

applied confining pressure. That means, the gain boundary sliding and the opening of

micro-cracks are more likely in low confining pressures.

2.2.2.3 Effect of stress-path on the short-term behavior of rock salt

In a number of studies, the effect of stress path on the short-term failure boundary of

rock salt has been discussed (e.g. Cristescu & Hunsche (1998); Wawersik & Hanuum

(1980); Langer (1982); Desai & Varadarajan (1987); Hunsche (1984)). Fig. 2.12a shows

the obtained failure stresses from conventional compression, simple shear and conventional

extension tests. As it is observed, the stress path plays an important role in the definition

of failure boundary in triaxial experiments. The rock salt strength in extension tests is

clearly smaller than the strength obtained in compression tests. For this reason, a number

of researchers have taken into account the influence of the intermediate stress component

on the mechanical behavior of rock salt. Consequently, they have defined Lode’s angle

dependent failure boundaries in order to consider the effect of stress path on short-term

behavior of rock salt (e.g. see Langer (1982); Hunsche (1992); Ma, Liu, Fang, Xu, Xia,

Li, Yang & Li (2013); Desai & Zhang (1987); Hou (2003)). Fig. 2.12b illustrates a Lode’s

angle dependent failure boundary in π−plane introduced by Desai & Zhang (1987). As

seen, the dependency of failure boundary on the Lode’s angle θ results in different peak

strengths in triaxial compression (θ = 60◦), shear (θ = 30◦) and extension (θ = 0◦) tests.

2.2.2.4 Effect of load/strain rate on the mechanical behavior

As explained earlier, the short-term failure boundary is determined through triaxial quasi-

static tests with certain load/strain rates. However, the applied deformation rates in these

tests are relatively high in comparison to the field condition. Therefore, it is important to

investigate the effect of load/deformation rate on the mechanical behavior of rock salt. In
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Figure 2.12: (a) Dependency of failure boundary on stress-path in short-term triaxial
experiments (test data from Cristescu & Hunsche (1998)); (b) The Lode’s angle dependent
failure surface defined by Desai & Varadarajan (1987)

contrary to other rock materials, rare attempts have been made up to now to understand

the rate-dependent behavior of rock salt Liang et al. (2011). In addition, the reported

results are not consistent in some cases. For example, Hunsche (1994) performed a series

of triaxial compression tests on cylindrical specimens from Asse mine located in Germany.

Different confining pressures (ranging from 0 to 20 MPa) and various strain rates (from

10−2 to 10−6s−1) were considered in these tests to determine the peak strength of the rock

salt. Fig. 2.13a shows the obtained ultimate stresses in these tests for the considered con-

fining pressures and strain rates. The obtained values show that, for a constant confining

pressure, the ultimate strength of rock salt is only slightly dependent on strain rate ε̇.

As discussed by Cristescu & Gioda (1994), unlike the brittle rocks, the peak strength of

rock salt does not change significantly with the strain rate. However, because of ductility,

the value of strain at failure increases by decreasing the deformation rate. Furthermore,

if the test is carried out at a sufficiently low value of strain rate then the experiment

becomes finally a creep test with constant stress state without short-term failure (but

perhaps with tertiary creep after a long time if the stress state is in the dilatancy zone

Cristescu & Gioda (1994)). Similar results regarding the independent relation between

failure boundary and strain rate have been reported by Senseny et al. (1992) and Liang

et al. (2011). However, Fuenkajorn et al. (2012) performed a series of load-controlled

triaxial tests on cubic samples from Maha Sarakham mine in Thailand. The obtained

results for different confining pressures (i.e. ranging from 0 to 20 MPa) and the different
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loading rates (i.e. from 0.001 to 10 MPa/s) have been represented in Fig. 2.13b. As seen,

the ultimate strength of rock salt increases considerably with increasing the loading rate,

in particular for high confining pressures. Fuenkajorn and his coworkers described the

dependency between the failure boundary and the loading rate through a power function

(see Table 2.1). On the other hand, they showed that the strain value at failure decreases

with increasing the loading rate. Earlier, similar results were reported by Langer (1982)

and Farmer & Gilbert (1984). They also concluded that the ultimate strength of rock

salt reduces with decreasing the strain rate.

2.2.2.5 Effect of temperature on the short-term strength

Depending on the type of the storage product (i.e. crude oil, natural gas, compressed air

or hydrogen), the temperature of the surrounding rock salt in a cavern may have consid-

erable variations (e.g. typically between 25 to 200 ◦C). Temperature affects the material

properties of rock salt. For example, Wawersik & Hanuum (1980) showed that the ulti-

mate stress reduces in high temperature condition while the rock salt ductility increases.

They also showed that the ratio of volumetric strain to deviatoric strain in quasi-static ex-

periments increases significantly with increasing temperature. The weakening of rock salt

at elevated temperatures has been reported by Langer (1982) and Sriapai et al. (2012), as

well. Fig. 2.14 shows the degradation of short-term failure boundary of rock salt in high

temperature condition reported in Langer (1982).

2.2.2.6 Permeability changes and the effect of pore pressure

The low permeability of rock salt is an important factor to guarantee the tightness of the

underground storage cavities. Generally, rock salt in undisturbed state can be considered

as an impermeable material because of its extremely low permeability (i.e. less than

10−20 m2 Peach (1991)). Volume increase of rock salt in dilatancy domain is expected to

increase the permeability because of the new porosity created during the micro-cracking

process. Numerous experimental investigations have been conducted during the past

decades in order to understand the effect of permeability changes on the mechanical

behavior of rock salt (e.g. see Popp & Kern (1998); Popp et al. (2001); Schulze et al.

(2001); Peach (1991); Pfeifle et al. (1998); Alkan (2009); Fokker et al. (1993)). Since

the permeability of rock salt changes above the dilatancy boundary, its evolution can

be described through either the porosity or the volumetric inelastic strain. In a number
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(a)

(b)

Figure 2.13: (a) Strength of rock salt determined from triaxial compression tests at a great
number of confining pressures and strain rates Hunsche (1994); (b) Strength of rock salt
determined from triaxial compression tests for various confining pressures and loading
rates Fuenkajorn et al. (2012)
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Figure 2.14: Degradation of short-term failure boundary of rock salt in high temperature
condition Langer (1982)

Table 2.2: Some of the existing models to describe the permeability changes of rock salt

Model Equation Description

Stormont et al. k =
m2

b
φs This equation has been developed based on the

equivalent channel concept. m, b and s are model
parameters and φ is the porosity Stormont (1997).

Peach k = aεbvol The permeability is related to the dilatant volumet-
ric strain through a power function. a, b are model
parameters and εvol is the inelastic volumetric stain
Peach & Spiers (1996).

Stormont et al. k = aσ
(b+cσ3)
3 ε

(m+nσ3)
vol The influence of minimum principal stress on the

permeability changes has been taken into account in
this model. a, b, c, m and n are model parameters.
εvol and σ3 denote the inelastic volumetric stain and
the minimum principal stress, respectively Stormont
et al. (1992).

Heemann and
Heusermann

k =
ktp(

φtp
φ

)n1

+

(
φtp
φ

)n2
n1, n2 are model parameters. ktp and φtp are both
exponential functions of minimum principal stress,
i.e. ktp = a

k
exp (b

k
σ3) and φtp = a

φ
exp

(
b
φ
σ3
)

Heemann & Heusermann (2004); Popp et al. (2007).



2.2 Phenomenological behavior of rock salt 29

of studies, the effect of minimum principal stress on the permeability changes has been

taken into account as well. Table 2.2 shows some of the existing models to describe the

permeability changes of rock salt.

Fokker et al. (1993) investigated the effect of pore pressure on the peak strength and the

permeability of salt and showed that strength reduces and permeability increases with

increasing the pore pressure. When damage occurs in dilatancy domain, new pathways

may be generated for the gas/liquid to penetrate into the rock salt. Because of this reason,

the pore pressure increase can influence the strength and the mechanical behavior. The

presence of a fluid (liquid or gas) in the pores of a damaged rock salt creates an effective

pore pressure. The effect of pore pressure can be explained with the effective stress

concept Alkan et al. (2007); Schulze et al. (2001), which is given by:

σeff
ij = σij − αbppδij (2.3)

where αb is the Biot coefficient and pp is the pore pressure. The Biot coefficient αb < 1

indicates that only a part of the rock salt is affected by the fluid pressure. Alkan et al.

(2007) performed a series of tests on the Asse rock salt to determine the Biot coefficient.

The results obtained in these tests showed that the Biot coefficient is around 0.25 in the

vicinity of dilatancy boundary.

2.2.2.7 Tensile strength of rock salt

Tensile strength of rock material is normally defined by the ultimate strength in tension.

Rock salt generally has a low tensile strength (typically ranging from 0.2 to 3 MPa). The

tensile strength of rock salt can be determined either by the Brazilian test or the direct

tensile test. However, the tensile strength values obtained from the direct tensile test may

differ from the values determined from Brazilian test. This difference is due to the testing

procedure and the nature of salt itself Jeremic (1994). The low tensile strength is due to

the existence of micro-cracks in the rock. When the rock sample is under tension, the pre-

existing micro-cracks can propagate faster. The existence of micro-cracks may also result

in rupture in tension with a small strain. It should be noted that the tensile strength

is an important factor in design process of underground storage system. Therefore, all

the points at the vicinity of underground storage caverns should not experience a tensile

stress higher that the tensile strength.
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2.2.3 Rock salt behavior in long-term creep tests

2.2.3.1 Transient, steady-state and tertiary creep

When a rock salt sample is subjected to a constant load and temperature, a time-

dependent deformation known as “creep” takes place. Fig. 2.15 demonstrates how the

strain and the strain rate are developed during a creep test. Depending on the magnitude

of the applied load and the temperature, the following creep phases can be observed in

long-term experiments:

• Transient creep: after applying the load a transient deformation occurs. This type of

deformation is known as “transient creep” or “primary creep”. During the transient

creep, the creep strain rate reduces significantly due to the strain hardening.

• Steady-state creep: when the creep strain rate approaches to a constant value, a

steady-state deformation starts to develop. This phase of deformation is known as

“steady-state creep”, “secondary creep” or “stationary creep”.

• Tertiary creep: this is the third phase of creep deformation which is also known as

“accelerated creep”. In this phase, the creep strain rate shows a rapid increase due

to the crack growth and the damage propagation in the sample. When the damage

reaches to a certain threshold, the creep rupture or long-term failure takes place. As

already explained in Section. 2.2.2.2, the long-term failure or creep rupture occurs

only in dilatancy domain. Therefore, for the stress conditions below the dilatancy

boundary, this phase of creep is not experienced.

2.2.3.2 Effect of temperature on creep behavior

Studying the effect of temperature on creep behavior has a long history, in particular, with

regard to the storage of waste material in salt formations. In that case, the considerable

increase of temperature due to the radiation processes of nuclear waste deposited in salt

formations can significantly affect the creep behavior. Similarly, in the energy storage

caverns, the pressure fluctuations of the storage product (i.e. compressed air or hydrogen)

results in the temperature variation of surrounding rock. It is well accepted that the rock

salt ductility increases with increasing temperature. Due to this fact, the steady-state

strain rate in creep tests increases considerably at elevated temperatures. Fig. 2.16 shows

a double logarithmic chart representing the changes of steady-state strain rate with respect

to the applied stresses (i.e. deviatoric stress q) and the temperature. As seen, for a given
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(a) (b)

Figure 2.15: Typical responses observed in long-term creep tests, (a) axial strain vs. time;
(b) axial strain rate vs. time

stress, the steady-state rate shows a remarkable increase at the elevated temperatures.

For this reason, the maximum allowable temperature in a energy storage cavern is one of

the most important design factors, because it can accelerate the cavern convergence and

endanger the long-term serviceability of the storage system.

2.2.4 Rock salt behavior under cyclic loading

In the past, rare investigations have been made to understand the behavior of rock salt

under cyclic loading conditions. Therefore, the modeling of salt caverns that work under

cyclic loading conditions is still a challenging task. During the recent years, a limited

number of experimental studies have been performed to assess the effect of cyclic loading

on the mechanical behavior of rock salt with main focus on the fatigue failure and cyclic

damage progress (e.g. Fuenkajorn & Phueakphum (2010); Ma, Liu, Fang, Xu, Xia, Li,

Yang & Li (2013); Liu et al. (2014); Guo et al. (2012); Liang et al. (2012); Roberts et al.

(2015); Bauer et al. (2011)). Fig. 2.17a shows a typical stress-strain curve which can be

observed in the cyclic loading tests. This test has been performed by Guo et al. (2012)

on Jintan rock salt under uniaxial cyclic loading. As shown in this figure, the axial stress

monotonically increases from 0 to 22.5 MPa (90% of compressive strength), then, it varies

between 11.25 and 22.5 MPa. On the other hand, the plotted axial strain versus time in

Fig. 2.17 shows that the whole cyclic loading process can be divided into three stages that

is similar to the conventional static creep tests. In the first stage, the axial strain increases

rapidly and there is a large accumulation of strain. Then, in the second stage, the axial



32 2 State of the art

Log(q [MPa])
0.4 0.6 0.8 1 1.2 1.4 1.6

L
og

(
_" s
s
[s
!

1
])

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3
T= 50 /C
T= 80 /C
T= 100 /C
T= 150 /C

Figure 2.16: Effect of temperature on creep deformation; ε̇ss is the steady-state creep rate
and q represents the deviatoric stress, i.e. q = σ1−σ3; test data from Hunsche & Hampel
(1997)

strain accumulates slowly with a relatively constant rate and finally, after a number of

cycles, the axial strain increases considerably and the specimen reaches the fatigue failure.

Fatigue failure occurs when the strain energy exceeds a critical energy level equivalent to

failure under non-cyclic load Ma, Liu, Wang, Xu, Hua, Fan, Jiang, Wang & Yi (2013);

Attewell & Farmer (1973). The following items summarize the most important findings

related to the mechanical behavior of rock salt in cyclic loading condition.

• The failure in cyclic tests (or fatigue failure) can not be observed when the maximum

applied stress is below a threshold. Ma, Liu, Wang, Xu, Hua, Fan, Jiang, Wang

& Yi (2013) observed the fatigue failure for stresses in the range of 80-89 % of the

triaxial compressive strength of rock salt. Guo et al. (2012) reported a series of

uniaxial cyclic tests. Based on their observations, the suggested threshold value of

fatigue is between 75-80% of uniaxial strength. Song et al. (2013) suggest that the

fatigue limit of salt rock is equal to 75% of the compression strength. Liang et al.

(2012) indicate that, under cyclic loading, rock salt fails at a stress close to 65-70%

of the ultimate strength. However, all the suggested values are beyond the dilatancy

boundary which is approximately 65% of the compression strength. Therefore, it

can be concluded that fatigue failure is only expected above dilatancy boundary.

The damage accumulation will accelerate beyond the point of volume expansion

(Point B in Fig. 2.9). Afterward, with increasing the stress level, the rock salt will

quickly yield and fail under cyclic loading Liu et al. (2014).
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• The rock salt viscoplasticity decreases with increasing loading frequency. That

means, for lower loading frequencies, the rock salt ductility increases. Therefore,

the fast cyclic loads results in less strain accumulations Fuenkajorn & Phueakphum

(2010); Guo et al. (2012). However, the loading frequency conducted in most of the

experimental studies is much higher than those induced by the charge and discharge

processes of rock salt cavern (e.g., daily, monthly or annually).

• The maximum stress during the cyclic loading has more influence than the minimum

stress on the deformation behavior of rock salt. When the maximum stress increases,

the strain accumulation becomes more significant compared with those obtained

from increasing of minimum stress Ma, Liu, Wang, Xu, Hua, Fan, Jiang, Wang &

Yi (2013).

• The effect of temperature on cyclic loading behavior is still an open question. Song

et al. (2013) performed three uniaxial cyclic tests with different constant tempera-

tures (i.e. 13 ◦C, 30 ◦C and 60 ◦C). The obtained results showed that the fatigue

life increases with increasing temperature. This phenomenon may be caused by the

increase in the viscosity and ductility of rock salt.

2.3 Existing constitutive models for rock salt

2.3.1 Classification of the existing models

The phenomenological and micro-structural studies provide a basis for developing the rock

salt constitutive models. Underground storage of energy carriers in the form of crude oil,

liquid hydrocarbons or natural gas inside the rock salt caverns has been the topic of re-

search for many years. Therefore, a large number of investigations have focused only on

the modeling of transient and steady-state creep deformation. These models have been

specifically derived to predict long-term creep deformations in caverns with relatively con-

stant internal pressures (e.g. for seasonal or annual storage caverns). Of the main concern

in these groups of studies is to describe the ductile behavior of rock salt observed in the

long time experiments. These types of constitutive models are only applicable for the

stress states below the dilatancy boundary. In this case, dilatation effects such as damage

propagation, failure, permeability changes are not important. Table 2.3 provides a list of

some existing models which have been merely developed for the creep behavior of rock

salt without considering damage and dilatancy effects. However, the design process of
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Figure 2.17: Typical responses observed in cyclic loading tests, (a) axial stress vs. axial
strain, the red curve is the uniaxial quasi-static curve ; (b) axial strain vs. time; test data
from Guo et al. (2012)

caverns, in particular those operating under the cyclic thermo-mechanical loadings, be-

comes more reliable if the models cover all experimentally observed features. With this

motivation, more elaborate constitutive models have been developed during the recent

decade in an attempt to predict the rock salt behavior in the brittle domain (i.e. beyond

the dilatancy boundary). These groups of models provide the possibility to describe both

short-term and long-term behavior of rock salt. Table 2.4 lists a number of existing mod-

els which have been developed to predict the damage propagation and dilatancy effects

around the caverns. In another classification, the models can be divided into two groups

concerning their modeling approach, i.e. (1) macro-structural models (2) micro-structural

models. Basically, the macro-structural models employ the continuum mechanical con-

cepts such as viscoelasticity, viscoplasticity or continuum damage mechanics to describe
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the phenomenological behavior of rock salt under different conditions. Depending on the

model assumptions and the number of model parameters, different levels of complexity

exist among these types of models. However, these models have a general form as:

ε̇ieij = f (σij, T, t, d, α1, α2, · · · , αn) (2.4)

where, ε̇ieij denotes the inelastic strain rate. The inelastic behavior can be also described

as an additive superposition of several terms with the same format as Equtaion. 2.4. In

general, the inelastic strain rate can be a function of stress tensor σij, temperature T ,

time t, damage parameter d or a number of internal variables α1, α2, · · · , αn. Essentially,

the internal variables are defined to control the development of inelastic strain within the

hardening and softening processes. These constitutive models may also have some model

parameters without any physical meaning (i.e. curve fitting parameters). Generally, Eq.

2.4 can be expanded as:

ε̇ieij = F (σij, T, t, d, α1, α2, · · · , αn)
∂Q (σij, T, t, d, ά1, ά2, · · · , άn)

∂σij
(2.5)

here, function F is a scalar function which describes the magnitude of inelastic strain rate

tensor and function Q corresponds to the potential surface. The derivation of potential

surface with respect to the stress tensor (i.e.
∂Q

∂σij
) describes the direction of strain. Both

functions F and Q may include temperature dependent parameters (e.g. temperature

dependent viscosity). In this way, the effect of temperature on the mechanical behavior

is taken into account. Time is another important factor in constructing the constitutive

model. Some constitutive models directly include the time as a variable in the model

(time hardening models). Damage parameter can be another variable in a constitutive

model. Depending on the experimental observations, different definitions exist in the

literature for describing the damage of rock salt. For example, Hou (2003) and Ma,

Liu, Fang, Xu, Xia, Li, Yang & Li (2013) used a stress-dependent damage function to

describe the tertiary creep of rock salt. According to this definition, the rate of damage

progress during creep test is dependent on the magnitude of stresses applied to the rock

sample as well as of the current accumulated damage. Liu et al. (2014) showed that

the released energy during loading–unloading cycles increases exponentially above the

dilatancy boundary. They also concluded that, with the onset of volume dilation, the

damage development accelerates. Therefore, they proposed an exponential function for

the damage evolution which increases with the released strain energy. In the same line

of thought, Hampel & Schulze (2007) introduced a damage parameter whose value grows
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exponentially with the released volumetric strain energy in the dilatancy domain. On

the other hand, the micro-structural models intend to give a physical meaning to the

internal model variables. In other words, some model variables which affect the response

of the model in macro-level are defined based on the micro-level observations such as the

average grain size or the density of dislocations. In this way, a consistent description

between the micro-level changes and the macro-level observations is achieved. It should

be noted, in most cases, the micro-structural models apply one single equation to describe

different deformation mechanisms. In other words, the transition from one mechanism to

another in theses models is controlled by the internal variables associated with the micro-

sturctural (not through superpositioning). In order to highlight the differences between

these modeling approaches, two well accepted and approved constitutive models for rock

salt (in particular within the German research community) are explained more in detail

in the following sections.
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Table 2.3: The transient and steady-state creep models without damage and dilatancy
effects

Model Type Description

BGRa/BGRb Macro-

structure

These models were introduced by Hunsche & Schulze (1994) to describe

the steady-state creep deformation of rock salt as a function of tempera-

ture and deviatoric stress. More explanations in Section. 3.2

LUBBY2 Macro-

structure

LUBBY2 is a viscoelastic model to describe transient and steady-state

creep deformations. More explanations in Section. 3.3

Composite

model

Micro-

structure

Composite Model (CM) describes the transient and the steady-state creep

deformations using one single equation. Based on the model assumptions,

the sub-grain structure consists of: (1) the sub-grain boundary which is

formed by dislocations with high density (hard zone), and (2) the sub-

grain interior with a lower dislocation density (soft zone). Therefore,

similar to the composite material, the interior part is more ductile than

the boundaries and it shows a different deformation behavior. The strain

rate is defined based on the Orowan’s equation which relates the creep

rate to the average microscopic velocity and the density of free disloca-

tions in the crystalline materials. The creep strain rate in this model, is

a function of the deviatoric stress, temperature and three internal state

variables i.e. (1) the mean distance between dislocations, (2) the aver-

age width of sub-grain walls and (3) the average diameter of sub-grains.

The dependency of the creep rate on temperature has been expressed by

an exponential term while a hyperbolic sine term describes the stress de-

pendency. In the isothermal condition, only the internal state variables

change during the transient creep. Therefore, the creep strain rate can be

adjusted by varying these variables within a predefined range using suit-

able evolution functions. On the other hand, when the internal variables

reach to their maximum values, the creep strain rate remains constant

and the steady-state creep starts to develop. Under this condition, a bal-

ance state between the dislocation generation and the dislocation recovery

is obtained within the creep process Weidinger et al. (1997); Sedláček &

Blum (2002).
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Table 2.3 Continued: The transient and steady-state creep models without damage and
dilatancy effects

MD model Micro-

structure

The Multi-mechanism Deformation (MD) model was developed by Mun-

son and Dawson to describe the transient and steady-state creep defor-

mations. The total creep strain rate in this model is a summation of

three terms. Each term is associated with a specific creep deformation

mechanism. The three mechanisms represent (1) dislocation climb con-

trolled creep (2) the micro-mechanistically undefined mechanism for low

stresses (this mechanism was introduced in Section 2.1.4), and (3) dis-

location glide mechanism. The model includes two internal variables to

model the strain hardening and the recovery process during the transient

creep. However, the model has no description for dilatancy and damage

evolution. Therefore, it is mainly used to model creep deformation below

the dilatancy boundary Munson & Dawson (1981); Munson (1997, 1998);

Senseny & Fossum (1998) .

SUVIC

model

Micro-

structure

The SUVIC model (Strain rate history-dependent Unified Viscoplastic

model with Internal variables for Crystalline materials) is a unified model

with internal state variables (ISV) to describe the ductile deformation of

rock salt. Similar to the composite model (CM), one single equation is

used to describe the strain rate during the transient and the steady-state

creeps. This equation has some internal state variables which can evolve

during hardening and recovery processes. When theses variables reach to

their saturation value, the transient creep terminates and the steady-state

creep develops. Since its first version (Aubertin et al. (1991)), several

modifications have been applied to the model, e.g. see Aubertin et al.

(1991, 1999); Yahya et al. (2000); Aubertin et al. (1993).

Olivella et

al.

Micro-

structure

This model has been basically developed for crushed salt which is used

as the back-fill material in nuclear waste disposal systems. In constant

loading applications, the inelastic strain rate in this model consists of two

terms; i.e. (1) the fluid-assisted diffusional transfer rate ε̇
FADT

and (2)

the dislocation creep rate ε̇
DC

. As earlier discussed in Section. 2.1.4, the

fluid-assisted diffusional transfer creep is related to the deformation at

very low stress ranges. Olivella and Gens (2002) theoretically obtained

a function for ε̇
FADT

which describes the deformation based on several

factors such as stress, temperature, void ratio, average grain size and

degree of saturation. on the other hand, the dislocation creep term is

associated with the movement of free dislocations. This term is only

dependent on stress, temperature and void ratio Olivella & Gens (2002).
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Table 2.3 Continued: The transient and steady-state creep models without damage and
dilatancy effects

Urai et al.

model

Micro-

structure

This model describes the steady-state creep at low stress conditions. As

discussed earlier, the deformation at low stress ranges is governed by so-

lution precipitation creep. Under such condition, the creep strain rate has

a linear relation with the deviatoric stress, i.e. ε̇ ∝ q. Moreover, the creep

rate is a function of temperature and the average diameter of the grains.

According to Urai et al. (1986), the long-term deformation of rock salt

would be underestimated if the governing equations which describe other

creep mechanisms are extrapolated to this range of stress. For example,

Fig. 2.18 shows the experimental data for the steady-state creep rates

at different temperatures and stresses. As seen, the BGRa model can

adequately represent the creep behavior within the feasible range of the

experimental studies (i.e. green box). However, for the low stress range

(i.e. less than 5 MPa), the solution precipitation creep is the governing

mechanism. Therefore, extrapolation of the BGRa model to the low stress

range may result in large errors in long time Urai & Spiers (2007); Urai

et al. (1986, 1987).

Wawersik

and Zeuch.

(1984)

Macro-

structural

This is a steady-state creep model obtained based on theoretical and ex-

perimental studies. The model is suitable for describing the steady-state

creep deformation controlled by cross slip mechanism Wawersik & Zeuch

(1984).
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Table 2.4: List of existing constitutive models of rock salt with damage and dilatancy
effects

Model Type Description

Cristescu et

al.

Macro-

structural

More explanations in Section. 2.3.2

IfG/GS Micro-

structural

More explanations in Section. 2.3.3.

IfG/Minkley Macro-

structural

This is a viscoelastic-plastic model to describe the short-term and long-

term behavior of rock salt. Similar to the LUBBY2 model, the viscoelastic

part of the model describes the transient and the steady-state creep defor-

mations using the Kelvin and the Maxwell models, respectively. While,

the plastic component of the model accounts for the short-term behav-

ior in quasi-static tests. A modified Mohr-Columb failure boundary has

been used to predict the short-term failure. Moreover, the post-failure

softening can be described by including damage into the model. The elas-

tic parameters in this model are functions of inelastic volumetric strain.

Therefore, in dilatancy domain where damage and micro-cracking occur,

the elastic parameters are degraded with increasing the volumetric strain

Minkley & Muehlbauer (2007) .

Desai et al. Macro-

structural

The Desai model is based on a single-surface plasticity. The non-

associated flow rule in this model yields to better description of the vol-

umetric plastic strain. The dependency of yield surface on Lode’s angle

results in different material responses in triaxial compression, shear and

extension tests. The model takes into account the material dilatancy and

compressibility which enhances the modeling of the volumetric behavior

and improves the fit to the experimental data. In addition, the failure

boundary allows the model to account for the short-term failure of the

rock salt in quasi-static strength tests. Furthermore, the rate dependency

described via the viscoplasticity formulation explains the rate dependent

behavior of rock salt. As shown in Desai & Varadarajan (1987), the model

can be extended to a viscoplastic model using Perzyna viscoplasticity con-

cept Desai & Zhang (1987); Desai & Varadarajan (1987); Desai & Salami

(1987); Desai (2016).
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Table 2.4 Continued: List of existing constitutive models of rock salt with damage and
dilatancy effects

Composite

Dilatancy

Model

Micro-

structural

Composite Dilatancy Model (CDM) is an extended version of Composite

model (CM) which accounts for damage evolution, humidity effects and

short-term failure. Based on this model, the non-dilatant strain rate ob-

tained by the Composite Model is modified using three correction factors.

The functions Fh, δdam and PF are the correction factors which refer to

the effects of humidity, damage and post failure, respectively. The di-

latancy boundary defined by Hunsche et al. (2003) is used in the CDM

to characterize the onset of dilatancy and damage. Humidity increases

the creep rate above the dilatancy boundary. The function Fh(Φ, σ3, τ)

applies the effect of relative humidity Φ on the creep rate if the minimum

principal stress σ3 and the octahedral shear stress τ ensure that the stress

state is above the dilatancy boundary. The function δdam(d, σ3) defines

the dependency of creep rate on damage parameter d. In this model,

the damage evolution is formulated through the inelastic strain work per-

formed in dilatancy zone. This function results in material weakening and

failure. The correction factor PF describes the post failure behavior in

quasi-static strength tests. Recently, an extended version of CDM was in-

troduced in Hampel (2015) that takes into account the damage reduction

and the healing process below the dilatancy boundary Hampel & Schulze

(2007); Schulze et al. (2007); Hampel (2012, 2015).

FZK-INE Macro-

structural

The total inelastic strain rate in this model has two terms; i.e. (1) the

constant volume term and (2) non-constant volume term. The constant

volume term describes the transient and the steady-state creeps as a func-

tion of deviatoric stress and temperature. The volume increase of rock

salt above the dilatancy boundary is described by a Perzyna type vis-

coplastic model. The model was originally developed for crushed salt by

Hein (1991). An associated flow rule is used in this model to described

the dilatancy and compressibility of the rock salt. The size of yield sur-

face in stress space changes as a function of plastic volumetric strain.

The defined dilatancy boundary by Hunsche (1993) has been used in this

model to characterize the onset of dilatancy. Moreover, the short-term

failure boundary of Cristecu Cristescu & Gioda (1994) has been utilized

to predict the peak strength in quasi-static tests Hein (1991); Pudewills

& Krauss (1999); Pudewills & Droste (2003); Pudewills (2007a,b).
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Table 2.4 Continued: List of existing constitutive models of rock salt with damage and
dilatancy effects

MDCF Micro-

structural

This is an extended version of MD model which accounts for damage

evolution and damage healing during creep deformation. The Multi-

mechanism Deformation Coupled Fracture (MDCF) model was formed

by adding three terms to MD model. These terms describe the strain

rates caused by shear damage, tensile damage and damage healing. Fur-

thermore, a continuum, isotropic damage parameter has been included in

the model to enhance the stress influence by reduction of the effective area

and contributes directly to the creep strain rate. Therefore, tertiary creep

or long-term failure can be described by this model Chan et al. (1994,

1997); Fossum et al. (1998). Some modified versions of MDCF model

such as IUB-MDCF and LUBBY-MDCF have been suggested in Schulze

et al. (2007); Leuger et al. (2010); Hampel et al. (2010).

Hou/Lux

model

Macro-

structural

The total inelastic strain rate in this model is the result of the additive

superposition of three parts (1) viscoelstic strain rate with constant vol-

ume ε̇veij (2) viscoplastic strain rate induced by damage ε̇dij (3) viscoplastic

strain rate induced by healing ε̇hij . The viscoelastic term with constant

volume is based on the LUBBY 2 model. Hou and Lux have defined a

dilatancy zone in the stress space. In this zone, micro-cracking takes place

and damage grows up. Because of this reason, other relevant factors such

as permeability and creep rate have an upward trend. The dilatancy dam-

age strain rate ε̇dij consists of two terms: the ε̇dsij term, as a result of shear

induced damage and the ε̇dzij term which is the damage strain rate under a

tensile stress. Hou and Lux defined another boundary below the dilatancy

boundary called as healing boundary. The term healing is used for the

overall process of the damage decreasing. Within the healing zone (i.e.

below the healing boundary), the closing of micro-cracks takes place and

the damage heals. There exists also a transient area between the healing

and the dilatancy boundaries which is called “constant volume zone”. In

this zone, the volumetric deformation and the damage remain constant.

Similar to the dilatancy damage strain εdij , the healing damage strain εhij
is expressed through the plasticity theory Hou (2003); Hou & Lux (1998);

Lux (2009).
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Table 2.4 Continued: List of existing constitutive models of rock salt with damage and
dilatancy effects

Ma et al. Macro-

structural

The inelastic strain in this model has two terms, (1) the creep strain

consisting of transient, steady-state and tertiary terms, and (2) the in-

stantaneous plastic strain with generalized Hoek-Brown failure boundary.

The plastic term can describe the short-term behavior of rock salt in

quasi-static tests, while the creep term represents the long-term behav-

ior. Additionally, an isotropic damage parameter has been included in

the model to predict the tertiary creep and the long-term failure. The

evolution of damage parameter in this model is dependent on the stress

state and the current damage value Ma, Liu, Fang, Xu, Xia, Li, Yang &

Li (2013).

Deng et al. Macro-

structural

The inelastic strain in this model is a superposition of (1) a viscoelastic

term based on the Kelvin model; and (2) a viscoplastic term based on the

Duvaut-Lions model Duvant & Lions (2012) with Drucker-Prager yield

function. Moreover, based on the continuum damage mechanics definition

of the effective area, the relationship between stresses in the undamaged

material and the damaged material has been defined. The evolution of

damage in this model is related to the effective inelastic strain. In this

way, the tertiary creep in long-term experiments and the softening in

strain-controlled quasi-static tests can be modeled. The model is capable

to simulate the time-dependent deformation and quantitatively evaluate

the long-term stability of salt caverns Deng et al. (2014).

2.3.2 A macro-structural constitutive model: Cristescu et al. model

In this section, one of the macro-structural models is introduced more in detail. Cristescu

formulated an elasto-viscoplastic model in order to model the transient and the steady-

state creep of rock salt considering the volumetric dilatation and compressibility (see

Cristescu & Hunsche (1998); Cristescu & Gioda (1994); Cristescu (1987, 1993); Nicolae

(1999)). Based on this model, the total inelastic strain rate is obtained using Eq. 2.6.

ε̇trij and ε̇ssij represent the transient and the steady-state creep rates, respectively. In the

following, these quantities are explained in detail.
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Figure 2.18: Deviatoric stress q versus steady-state strain rate diagram including the BGR
laboratory data Hunsche & Hampel (1999). Applying these data in the low stress range
requires extrapolation. Dotted lines are extrapolation of the BGRa creep model. Red
dashed lines are the solution- precipitation creep model. As seen, the extrapolated BGRa
model may result in large errors in the long-term predictions



ε̇ieij = ε̇trij + ε̇ssij

ε̇trij = ktr

〈
1− w(t)

H(p, τ)

〉
∂Qtr(p, τ)

∂σij

ε̇ssij = kss

∂Qss(p, τ)

∂σij

(2.6)

The term ε̇trij represents a non-associated viscoplastic equation which describes the tran-

sient part of the creep strain. Qtr and H are the viscoplastic potential and yield functions

for the transient creep, respectively. Cristescu assumed that both functions depend on

two stress invariants only: the mean stress p and the octahedral shear stress τ . That

means, the effect of intermediate stress has not been taken into account in this model.

The viscosity coefficient ktr is a constant value (however, this parameter can be defined

as a function of temperature). w is the irreversible work per unit volume which is used as

a work hardening parameter or internal state variable. The brackets 〈〉 return always the

positive part of the function. The dilatancy and the short-term failure boundaries defined

by Cristescu and his coworkers have been shown in Fig. 2.11. Function Qtr has the key
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Figure 2.19: Modeling of creep and true triaxial tests for rock salt using Cristescu et al.
model

role in describing the volumetric deformation during transient creep. This function has

been defined in a way that the following conditions are fulfilled Cristescu (1993):



Below dilatancy boundary⇒ ∂Qtr(p, τ)

∂p
> 0⇒ ε̇trvol < 0

Dilatancy boundary⇒ ∂Qtr(p, τ)

∂p
= 0⇒ ε̇trvol = 0

Beyond dilatancy boundary⇒ ∂Qtr(p, τ)

∂p
< 0⇒ ε̇trvol > 0

(2.7)
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The term ε̇trij can be also used to describe the quasi-static strength tests. Two typical

examples of applying the Cristescu model for salt rock have been shown in Fig. 2.19. In

the first example, the transient creep of the salt rock has been modeled. A constant mean

pressure (p = 40 MPa) has been applied to the salt rock specimen while the deviatoric

part increases in seven steps (τ = 5, 10, 15, 20, 25, 30, 32.5 MPa). The duration of each

step is between 10-15 days. Therefore, the change of strain has been calculated using the

transient creep term. The second example describes the short-term strain-stress behavior

of the salt rock in a triaxial experiment. The mean stress is kept constant (p=40 MPa)

and the deviatoric part increases with a constant rate (τ̇ = 21.4 MPa/min). As shown,

the volume increase (dilatation) and the failure can be described using this model.

The term ε̇ssij in Eq. 2.6 corresponds to the steady-state creep deformation. kss is the

steady-state viscosity coefficient and Qss(p, τ) is the steady-state potential function. This

function has been obtained by Cristescu in Cristescu & Gioda (1994); Cristescu & Hunsche

(1998). Based on the model assumptions, the volumetric changes inside the compress-

ibility zone is assumed to be zero for the steady-state creep because the volume can not

shrink to zero when time goes to infinity. Therefore, the steady-state potential function

has been defined considering the following conditions:



Below dilatancy boundary⇒ ∂Qss(p, τ)

∂p
= 0⇒ ε̇ssvol = 0

Compressibility/dilatancy boundary⇒ ∂Qss(p, τ)

∂p
= 0⇒ ε̇ssvol = 0

Beyond dilatancy boundary⇒ ∂Qss(p, τ)

∂p
< 0⇒ ε̇ssvol > 0

(2.8)

Two typical creep curves have been depicted in Fig. 2.20a which show the transient and

the stationary creep responses using the Cristescu model. Moreover, a scalar damage

parameter d has been defined by Cristescu in Eq. 2.9 to determine the amount of energy

released due to the micro-cracking. wvol(t) denotes the volumetric viscoplastic strain

work per unit volume and wmaxvol is its maximum value which is reached at the dilatancy

boundary. The critical value of damage df for characterizing the creep failure is obtained

empirically. Therefore, the long-term failure or creep rupture occurs when d(t) is equal

to its ultimate value df .

d(t) = wmaxvol − wvol(t) (2.9)
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2.3.3 A micro-structural constitutive model: Günther/Salzer model

In this section, one of the micro-structural models is introduced more in detail. This

constitutive model has been developed based on the physical processes which take place

at the microscopic level Günther & Salzer (2007); Günther (2009); Günther et al. (2015).

Accordingly, the three phases of creep are described in the scope of a single equation.

Based on this model, the inelastic strain rate is equal to:

ε̇ieij = Ap

qnp(
ε
V

eff

)µ ∂Qcr

∂σij
(2.10)
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Figure 2.21: Triaxial short-term strength test modeling using Günther/Salzer’s model

where Ap , np and µ are material parameters and q is the deviatoric stress. ε
V

eff is an internal

state variable which governs the hardening, recovery and damage behavior. The potential

function Qcr in this equation is only dependent on the second invariant of deviatoric

stress tensor, i.e. Qcr = q =
√

3J2. Initially, the deformation rate depends on the

dislocations presented in the natural crystal of the salt rock which is shown as ε
V 0

eff . As

deformation continues , new dislocations are generated and the density of dislocations

increases. Therefore, the value of ε
V

eff goes up and this leads to a reduction in the inelastic

strain rate ε̇ie. This step can be considered as the transient part of creep for the salt

rock. With further deformation, the recovery processes become active. With the growing

density of dislocations, or hardening, also the recovery rate increases. When the rate

of the recovery and the generation of dislocations are equal, the value of ε
V

eff becomes
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constant and the creeping passes into the steady-state phase. For the stresses beyond

the dilatancy boundary, the local stresses resulting from the generation of micro-cracks

lead to the long-term failure. Under such condition, the propagation of damage results in

softening behavior. Therefore, the generated damage counteracts the hardening and the

value of ε
V

eff decreases rapidly and the tertiary creep occurs. Considering these micro-level

processes, Günther and Salzer proposed the following equation for the evolution of the

state variable ε
V

eff:

ε̇
V

eff =

√
2

3
ε̇ieij : ε̇ieij −

ε
V

eff

tc exp (Q/RT )
− ε̇vol (2.11)

The term tc exp (Q/RT ) defines the time at which the steady-state creep starts to develop.

The dependency of the creep rate on the temperature is captured by this term. The

parameter tc is determined experimentally. The last term in the right side of Eq. 2.11

shows the effect of damage on the strain rate. Accordingly, the damage evolution rate

is equal to the volumetric strain rate ε̇vol. Günther and Salzer developed a function for

describing volumetric strain rate. This function is dependent on the inelastic strain work

performed above the dilatancy boundary wdil and the minimum principle stress σ3. During

the creep test, the term ε̇
V

eff is positive in the transient creep domain and converges to zero

in case of steady-sate creep. If damage is considered, the term ε̇
V

eff decreases and becomes

negative. Therefore the creep rate accelerates and the tertiary creep occurs. Fig. 2.20b

represents the typical creep curves obtained by the Günther/Salzer’s model.

The Günther/Salzer’s model can be used for modeling the triaxial short-term strength

test. In this case, the parameter np in Eq. 2.11 is not constant anymore. Instead, this

parameter changes with the volumetric strain εvol and the minimum principal stress σ3

as follows:

np =
np0 + n1 exp (n2σ3) (1− exp (−n3εvol))

(1− εvol)
n4

(2.12)

where n0 denotes the stress exponent for the non damaged salt rock. σ3 is the confining

pressure and n1,..., n4 are the model parameters. Fig. 2.21 represents two examples of

triaxial test modeling using Günther/Salzer’s model.
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2.4 Modeling of storage systems in rock salt formations

Beside the material modeling investigations, a large number of studies deal with the

numerical simulation of salt caverns for different applications. Depending on the storage

product, the modeling considerations such as the time scale of the simulation, the loading

rate and the magnitude of the thermo-hydro-mechanical loads applied to the rock salt

may be different from one application to another. For example, in a crude oil storage

cavern, the loading rate is very slow and the time scale of the storage is very long in

comparison to the compressed air storage caverns. A large number of investigations have

been specifically performed to predict the long-term behavior of salt caverns under creep

deformation with relatively constant internal pressures (e.g. natural gas storage caverns).

However, it has to be pointed that, up to now, rare investigations have been made to

model the behavior of rock salt in compressed air storage caverns considering both cyclic

mechanical and cyclic thermal loading. The main objective in this section is to review

the most important issues related to the modeling of salt caverns.

2.4.1 Solution-mining process

A typical salt cavern is subjected to different loading conditions during the construction

and operation time. In other words, the magnitude and rate of loading applied to the

rock salt medium may have various changes throughout the cavern’s life. As schematically

represented in Fig. 2.22, the solution mining process is carried out in different phases which

are explained as follows:

Initial phase: a bore hole is drilled from the ground surface down to a level equal to

the bottom of the cavern. Then, two leaching pipes which are concentrically suspended

into each other are run into the bore hole. Depending on the storage product and the

geological formations, the depth of excavation may vary between 300 to 2000 m Bérest

et al. (2007). Some of the existing caverns and their excavation depths have been shown

in Fig. 2.23. After drilling the well, the bore hole is cemented from the ground surface to

the casing-shoe which indicates the top of the cavern.

Leaching phase: in this phase, fresh water is continuously injected into the rock salt

medium through the leaching pipes. The salt is dissolved by the water and the mixture

of salt and water (brine) is transferred to the ground surface. Two different operational

modes are used to ensure a controlled development of the cavern shape. The leaching

modes are defined as: (1) the direct leaching process in which the fresh water runs through
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the inner leaching pipe and the produced brine is transferred to the ground surface via

the outer pipe and (2) the indirect leaching process in which the brine runs through the

inner leaching pipe and the fresh water is injected to the rock salt medium via the outer

pipe. By applying these two leaching modes and by shifting leaching pipes, the cavern is

shaped. Leaching phase is relatively a long-term process. That means, depending on the

volume of the cavern, the leaching time could range from one year to a few years Bérest

& Brouard (2003).

Debrining phase: debrining process is performed after leaching phase. In this phase, the

brine remaining in the cavern is displaced by injecting the storage product (i.e. such as

compressed air or hydrogen) into the cavern. The storage product is injected through the

outer pipe while the brine is extracted via the inner leaching pipe. The duration of this

phase is less than leaching phase and it may take a few months to extract the brine from

the cavern.

2.4.2 Finite element simulation of storage systems in rock salt

A number of studies can be found in the literature that suggest analytical solutions to in-

vestigate the performance of rock salt caverns (e.g. analytical solutions for predicting the

cavern convergence Brouard et al. (2013); Li et al. (2015); Wei et al. (2016) or calculating

the failure and the dilatancy around caverns Cristescu & Paraschiv (1995)). However,

these types of studies are not applicable for more complicated scenarios in terms of geom-

etry, loading condition and material model. In this case, Finite Element Modeling (FEM)

can be considered as a powerful tool to solve the boundary value problems which govern

the behavior of the model. Obviously, a finite element model should be constructed based

on appropriate assumptions. In the following, some of the required assumptions for the

finite element modeling of salt caverns are reviewed.

2.4.2.1 In-situ condition

The initial or the in-situ stresses before excavation are called “primary stresses”. In most

studies, the primary stresses have been assumed to be isotropic (i.e.
σh
σv

= 1). The in-situ

measurement performed by BGR for the Gorleben salt dome located in Germany showed

that the maximum and minimum in-situ stresses at the measuring points differ by only

a small amount, which justifies the isotropic stress assumption Bräuer et al. (2011).

However, Cristescu reported that, depending on several factors such as pore pressure,
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lithology, geologic structure and tectonic setting, the ratio between horizontal primary

stress and the vertical primary stress can range between 0.3 to 3. Despite of the fact, very

rare investigations have been performed up to now to understand the effect of primary

stresses on the modeling predictions. In general, with the isotropic stress assumption, the

vertical and horizontal stresses at depth h are calculated through the overburden pressure

(i.e. σv = σh = ρgh).

Regarding the initial temperature, the initial rock mass temperature increases linearly

with depth with a temperature gradient of ≈ 0.03 ◦C/m Serbin et al. (2015). Therefore,

the temperature at the depth of h is approximately equal to T (h) = T (h0) + 0.03h. Here,

T (h0) is the above ground temperature. Similar equations can be found in the literature

that describe the changes of temperature with depth. For example, Düsterloh (2010)

applied the following equation:

T (h) = T (h0) + 0.04hcap + 0.02h
salt

(2.13)

where, hcap indicates the thickness of overlaying formation above the salt dome and h
salt

denotes the thickness of salt formation above the cavern.

2.4.2.2 Thermodynamic of gas in the cavern

The temperature variation resulted from the injection and withdrawal processes is an im-

portant issue which should be considered in the numerical simulation. In particular, the

effects of temperature variation can be more significant in the compressed air or hydrogen

storage caverns which have relatively rapid charge/discharge cycles. However, accurate

prediction of temperature inside the cavern is a challenging task. A lot of factors may

influence the temperature of gas inside the cavern such as properties the storage gas (e.g.

specific heat capacity), density of the gas, volume of the cavern, rate of charge/discharge

processes, heat transfer between gas and rock mass, inflow/outflow temperature and sur-

rounding rock temperature. Practically, some of these factors (e.g. the heat transfer

between the gas and the surrounding rock mass) cannot be easily measured. Therefore,

the existing models have simplified the process by different assumptions such as uniform

distribution of temperature inside the cavern, constant volume for the cavern, constant

rock mass temperature or even adiabatic condition (for example see Serbin et al. (2015);

Lestringant et al. (2010); Kushnir et al. (2012); Raju & Khaitan (2012); Maton et al.

(2013); Xia et al. (2015); Guo et al. (2016)). In these types studies, the calculation of gas
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temperature and pressure inside the cavern is carried out by solving the mass and energy

balance equations analytically.

2.4.2.3 Geometry of the cavern

For the sake of simplicity, the cavern geometry is normally idealized. In general, the

simplified salt caverns have typically cylindrical, spherical or oval shapes. Fig. 2.24 is an

illustration for a simplified cavern model. The most important geometrical parameters

which can affect the mechanical behavior of cavern are: the cavern diameter, the height,

the shape of the roof (i.e. flat or with curvature), the distance to the neighboring caverns

and the distance to the neighboring formations (e.g cap rock) Staudtmeister & Rokahr

(1997). The effect of geometrical parameters on the stability of the cavern have been

investigated in a number of studies; for example in Cristescu & Paraschiv (1995); Wang

et al. (2013); Sharifzadeh & Ghasr (2006); Moghadam et al. (2015); Wang, Yang, Ma,

Daemen & Wu (2015); Yang et al. (2016); Wang et al. (2016).

2.4.2.4 Boundary conditions and time scale of the simulation

The boundary conditions and time scale of the simulation are strongly dependent on

the storage product and the storage requirements. For example, the pressure variations

in natural gas storage caverns takes place in a seasonal basis, while the compressed air

storage caverns may experience daily cycles. Due to this fact, the selected time steps

for the FE simulation should be much smaller in salt caverns with high frequency cycles

than the seasonal or annual storage caverns. In addition, because of different storage

requirements, the magnitude of the operating pressure and temperature differs from one

application to another.

2.4.2.5 Thermo-Hydro-Mechanical coupling

Obviously, the safety assessment of rock salt caverns requires careful consideration of

thermo–hydro–mechanical (and chemical) processes. These processes interact and influ-

ence each other in a complex manner. Additionally, they do not necessarily have the same

spatial and temporal scales Mart́ın et al. (2015). For example, the flow pathways created

by the damage increase the permeability of rock and represent the potential risk for gas

leakage around the cavern. Subsequently, if the pore pressure locally exceeds the mini-

mum principal stress, the fluid infiltration in rock salt takes place and the local widening
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of grain boundaries occurs Schulze et al. (2001). Under such conditions, the mechanical

behavior of the rock salt is affected by the gas and liquid phases. On the other hand,

the temperature of rock salt around the cavern may change due to the gas injection and

withdrawal processes. This temperature change introduces additional stresses in a nar-

row zone around the cavern due to the thermal expansion and contraction Bérest et al.

(2007); Brouard et al. (2011). Moreover, the temperature variation affects the rate of

creep deformation and changes the cavern closure rate Pudewills & Droste (2003); Serbin

et al. (2015).

2.4.3 Design criteria for salt caverns

Rock salt caverns are widely recognized as secure storage places for storing energy. How-

ever, some accidents have been reported in the past (e.g. see Yang et al. (2013); Bérest

& Brouard (2003); Evans et al. (2006)) which show the necessity of careful engineering

designs. It should be noted that the numerical simulations are always accompanied by

different types of uncertainties. These uncertainties can be associated with both the input

variables of the model and the numerical approximation itself. During the recent years,

a number of studies have been performed to evaluate the performance of the storage sys-

tems considering uncertainties (for example see probabilistic study of failure Mahmoudi

et al. (n.d.), risk analysis associated with storage caverns Yang et al. (2013); Zhang et al.

(2017)). Although various factors such as excessive loading conditions, equipment failure

or human error may endanger the performance of a storage system, only the geomechanical

design criteria which cause major failure are discussed in this thesis. This type of failure

can have disastrous consequences such as huge economical loss, destructive environmen-

tal impacts or even casualties. As shown in Fig. 2.25, the most important geomechanical

design criteria are mechanical stability, serviceability and oil/gas leakage. These factors

are explained in the following sections.

2.4.3.1 No-dilatancy criterion

As explained earlier, the rock salt shows a transition from ductile to brittle behavior

in the dilatancy zone. Subsequently, the increasing damage in dilatancy zone results in

the opening of micro-cracks and the increasing of permeability. For these reasons, the

dilatancy boundary can be considered as a threshold to ensure the long-term integrity

and tightness of the cavern. In general, a conservative utilization criterion is defined as

shown in Eq. 2.14 to check whether the stress state is in the dilatancy zone or not (e.g.
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see Yang et al. (2016); Wang et al. (2016); DeVries et al. (2005); Asgari et al. (2012); Ma

et al. (2015)).

UC =

√
Jdil

2√
J2

(2.14)

where J2 is the second invariant of deviatoric stress and Jdil
2 is its value at the dilatancy

boundary. When UC < 1, the stress state locates beyond the dilatancy boundary. Thus,

the operating condition of the cavern is not safe and cavern may experience long-time

failure due to the damage progress.

2.4.3.2 Short-term failure ratio (SFR)

The ratio between the ultimate shear stress and the current shear stress is a quantity

to show the failure zones around the cavern subjected to the extreme loading conditions

Fuenkajorn et al. (2012); Nazary et al. (2013). The short-term failure ratio is defined as

follows:

SFR =
τf
τ

(2.15)

where τ is the octahedral shear stress and τf denotes the ultimate octahedral shear stress.

When SFR = 1, the stress state has reached to the short-term failure boundary. Thus,

the failure zone around the cavern can not carry the load anymore and it may collapse.

2.4.3.3 Long-term failure ratio (LFR)

In a number of studies, the long-term stability of rock salt caverns has been investigated.

If the operating conditions in a cavern are not selected appropriately, the stress state

around the cavern may lie in the dilatancy zone. Therefore, some points around the

cavern experience dilatancy and damage. Under such condition, the damage accumulates

with time at the boundary of cavern. When the accumulated damage is equal to a critical

value obtained from experiments, the long-term failure of the cavern is reached Cristescu

& Gioda (1994); Nazary et al. (2013); Fuenkajorn et al. (2012). Based on this explanation,

the long-term failure ratio (LFR) is defined as follows:

LFR =
d(t)

df
(2.16)
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Where d(t) is the damage value at time t and df is the ultimate damage value. The

long-term failure ratio can be considered as quantity to predict the tertiary creep or the

long-term cyclic failure. Creep deformation and long-term integrity of salt caverns have

been investigated in Yang et al. (2015); Hou (2003); Deng et al. (2014); Nazary et al.

(2013); Mart́ın et al. (2015).

2.4.3.4 Tensile failure

Rock salt has a poor tensile strength. The thermo–mechanical loading conditions have to

be defined in a way that no tensile stress is experienced around the cavern. The tensile

failure may have different sources. The operating pressure of the cavern can cause tensile

failure if it exceeds the overburden pressure. Therefore, based on an empirical approach,

the maximum admissible pressure in the cavern should be set to 80-85 % of the overburden

pressure Bérest et al. (2015). The thermal contractions around the cavern may lead to

tensile failure as well. According to Bérest et al. (2007); Jafari et al. (2011); Brouard et al.

(2011), the temperature of rock salt around the cavern changes due to the gas injection and

withdrawal processes. This temperature change introduces additional stresses in a narrow

zone around the cavern due to the thermal expansion and contraction. In other words,

the temperature decrease resulted from rapid depressurization induces significant thermal

stresses at the boundary of cavern Bérest et al. (2013). These additional thermal stresses

can lead to tensile fracturing. Therefore, to obtain the maximum depressurization rate

and the minimum admissible temperature, the tensile failure criterion have to be checked.

Accordingly, the minimum principal stress σ3 in the surrounding rock should not exceed

the tensile strength of rock salt σ
tensile

, that is:

σ3 < σ
tensile

(2.17)

2.4.3.5 Cavern convergence

The serviceability of the system is affected if a significant reduction in the storage capacity

of the cavern occurs. For this reason, it is important to control the factors which may

increase the rate of cavern closure. The volume loss of the cavern (VL) during its operation

time is evaluated using the following equation:

VL =
V0 − Vt
V0

. (2.18)
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here, V0 is the initial volume of cavern and Vt denotes the volume after time t. As explained

before creep deformation of rock salt is a function of deviatoric stress and temperature.

Therefore, when the internal pressure of the cavern drops down , the rate of volume

convergence increases because the cavern is subjected to the higher deviatoric stresses.

Similarly, the cavern closure rate can accelerate if the temperature inside the cavern rises

up Pudewills & Droste (2003); Serbin et al. (2015). However, the rate of cavern volume

loss typically is limited to 1% per year Asgari et al. (2012) (or not more than 30% for the

whole design lifetime Wang et al. (2016)).

2.4.3.6 Ground subsidence

Up to now, rare major accidents at the ground level resulting from the convergence of

deep caverns has been experienced. For instance, Yang et al. (2013) listed five subsidence

accidents which occured between 1970 to 1999. Because of large cavern convergence, the

amount of subsidence was between 20 to 90 mm/a in these caverns. However, the ground

subsidence in shallow rock salt caverns (i.e. less than 500 m deep) can be relatively

higher. Beside the depth of cavern, other factors such as internal pressure, material

properties of salt, cavern diameter, running time and excavation rate may affect the

surface settlement Zhang, Wu, Wang, Zhang, Daemen & Liu (2015). If the operating

conditions of an existing cavern are not appropriate, the creep deformation around storage

caverns becomes significant. Under such condition, the surface subsidence induced by the

excessive volume loss may cause huge environmental and economical losses. Therefore,

the prediction of surface settlement is essential to ensure the long-term serviceability of

salt caverns. During the recent years, numerous studies have been performed by many

scholars to predict the surface settlement above the storage cavern. Among them, the

following studies are worth to be mentioned:

• Subsidence prediction model for cylindrical caverns with stiff roof Karimi-Jafari

et al. (2008)

• Time-dependent subsidence prediction model for spherical caverns in bedded rock

salt Zhang, Wu, Wang, Zhang, Daemen & Liu (2015)

• Subsidence prediction model for cylindrical caverns Eickemeier (2005)

• Semi-analytic model for subsidence prediction caused by hydrocarbon extractionFokker

& Orlic (2006)

• Subsidence prediction model for cylindrical and spherical caverns with constant or

cyclic internal pressures Li et al. (2015)
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• Subsidence prediction model for caverns excavated in bedded rock salt Wei et al.

(2016)

2.4.3.7 Gas/oil leakage

The storage product in the cavern gas/oil may find different path ways for leakage. The

potential leakage pathways are (1) through the cemented shaft, (2) through the casing, (3)

through the space between cemented shaft and the casing and (4) through the fractures

and cracks in the rock salt Bai et al. (2014). For the later case, it is essential to take into

account the permeability changes of rock salt under the influence of damage. Another

important pathway for leakage is the high permeable layers existing in bedded rock salt

formations. Modeling of gas seepage and the tightness of cavern excavated in bedded rock

salt have been investigated in Cosenza & Ghoreychi (1999); Huang & Xiong (2011); Kim

et al. (2012); Wang, Ma, Yang, Shi & Daemen (2015); Xiong et al. (2015).

2.5 Summary

In this chapter, the state of the art and the advances related to the micro-structure

and the phenomenological behavior of rock salt were presented. In addition, the most

important design factors in numerical modeling of storage caverns excavated in rock salt

formations were outlined. Accordingly, the following conclusions can be drawn based on

the presented discussions :

• Rock salt is a ductile material with very low permeability in its undamaged state.

Moreover, rock salt formations can be found in different parts of the world in suffi-

cient depth and volume. These properties make the rock salt caverns suitable places

for storing gaseous or liquid energy carriers.

• Mechanical properties of rock salt are governed by deformation mechanisms oc-

curring in the crystal structure. In other words, many experimental observations

such as creep, strain hardening, volume changes or failure can be explained through

micro-structural deformations. In general, stress state, temperature and time are

the variables which determine the dominant deformation mechanisms in the struc-

ture of salt. For example, depending on the applied stress and temperature, creep

deformation in rock salt can be due to the movement of free dislocations or the

precipitation of salt along grain boundaries.
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• Rock salt shows a transition from ductile to brittle behavior. This transition is

commonly represented in stress space through the dilatancy boundary. Beyond the

dilatancy boundary, i.e. in the brittle domain, microscopic cracking takes place.

Subsequently, because of grain rotation and inter-granular slip, the volume of salt

increases. The volume increase and the interconnection of micro-cracks have unfa-

vorable consequences such as rapid increase of permeability, mechanical weakening,

tertiary creep and long-term failure. This fact should be taken into account in all

steps of cavern design.

• Many rock salt constitutive models with different orders of complexity can be found

in the literature. However, depending on the storage product and the storage re-

quirements, the governing variables at field such as stress, temperature and deforma-

tion rate (time) may significantly differ from one application to another. Therefore,

for each application, it is important to select a model which can represents the most

relevant deformation mechanisms at field.

• Stability and serviceability of salt caverns have to be investigated through adequate

numerical simulations constructed based on appropriate assumptions. Geometry

of the cavern, in-situ condition, time scale of the simulation and thermo-hydro-

mechanical coupling are the most important modeling factors which should be care-

fully selected. Additionally, rock salt dilatation, damage propagation, tensile failure,

permeability changes and volume loss are the most important criteria to check the

safety of caverns.

Some recommendations concerning enhancing reliability in modeling and the possible

future developments are:

• Obviously, a fundamental understanding of micro-mechanism processes is essential

to describe the rheological behavior of rock salt. However, a quick survey of existing

literature reveals that the number of contributions related to the microscopic behav-

ior of rock salt are much less than those in macro-level. Therefore, more elaboration

in this regard is needed.

• The damage healing process, in particular during cyclic loading, is still an unknown

process. More laboratory experiments are required to set up a reliable model to

predict healing process.

• A few experimental studies can be found in literature regarding the cyclic loading

behavior of rock salt. Recently, a number of studies have investigated the fatigue

failure under the influence of loading amplitude or frequency. However, there are
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still open questions regarding the cyclic response of rock salt. For example, the

effect of cyclic loading on the onset of dilatancy or the effect of cyclic temperature

on mechanical behavior are still not clear.

• In a majority of studies, the thermo-mechanical loads applied to the rock salt sample

in the experiment do not necessarily represent the field condition. Consequently,

the calibration of constitutive model and the predictions made by the numerical

simulations may involve a significant amount of uncertainties. Due to this fact,

the field conditions have to be taken into account in conducting the experimental

investigations.

• Although, the increasing of permeability caused by dilatancy has been investigated

since many years, the development of effective stress in rock salt in the presence of

pore fluid pressure needs still more research efforts.

• Validation of constitutive models using in-situ measurement data is an important

issue. All introduced approaches need to be validated against real data or/and

representative laboratory tests that may be considered as a challenging task for

future. Since the solution-mined caverns are very deep structures, conducting the

field measurements which might help us to understand the real response of the host

rock are practically very difficult. Therefore, it is needed to development new in-situ

investigatory methods for determining rheological material parameters.

• It is common to simplify the salt cavern finite element model in terms of its geometry

and boundary conditions. In this regard, the 3D modeling of cavern with non-

simplified geometries or modeling of non-salt layers may improve the predictions.

• Accurate prediction of thermodynamics of gas/air in caverns can be considered as an

interesting research topic. Advanced numerical techniques such as CFD modeling

(computational fluid dynamics) can be applied to achieve this goal.

• The deformation mechanism under low stress and temperature has not been fully

understood and it may affect the long-term predictions. More studies regarding the

effect of this mechanism on the long-term response of underground storage systems

are needed.



3 Structure of the implemented

constitutive models

3.1 General

The basic governing field equations in the framework of Newtonian mechanics are (1)

conservation of mass, (2) conservation of momentum, (3) conservation of angular momen-

tum, (4) conservation of energy, and (5) thermodynamic laws. Independent of the internal

constitution of the material, these principles have to be valid for all engineering bound-

ary value problems. In addition to the these basic principles, a solution to a boundary

value problem in continuum mechanics requires constitutive equations. A constitutive

equation is a mathematical function which describes the observed deformations in a con-

tinuous medium. In this chapter, the structure of three employed constitutive models

for modeling of rock salt behavior are explained. The models can be ordered based on

their complexity and their capabilities in modeling of observed deformation responses as

follows:

• Model I: it is an empirical model to describe the steady-state creep deformation

without dilatancy and damage.

• Model II: it is a viscoelastic model to describe the transient and the steady-state

creep deformations without dilatancy and damage.

• Model III: it is a viscoplastic-creep-damage model to describe the short-/long-term

behavior of rock salt considering dilatancy and damage.

It should be noted that these models have been implemented in the finite element code

Code-Bright and they have been used in this thesis for modeling of salt caverns. The

following sections describe the structure of the models more in detail.

63
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3.2 Model I: an empirical creep model

This model is known as BGRa model and it has been introduced by Hunsche & Schulze

(1994) to describe the steady-state creep deformation of rock salt as a function of temper-

ature and stress. In fact, this model has been developed based on the Norton-Hoff power

law model which is a well-known creep model for metals Norton (1929). According to this

model, the total strain rate is a sum of two parts, i.e. the elastic strain rate ε̇elij and the

steady-state creep strain rate ε̇crij . That is:


ε̇ij = ε̇

el

ij + ε̇
cr

ij ,

ε̇elij = 1
2G
ṡij + 1

9K
İ1δij,

ε̇crij =

{
Ac exp

(
Qc

RT

)
qnc

}
∂q

∂σij
=

3

2

{
Ac exp

(
Qc

RT

)
qnc−1

}
sij.

(3.1)

As seen, the elastic strain is simply described using Hooke’s law. As explained earlier, K

and G are the bulk and shear moduli respectively and sij denotes the ijth component of

deviatoric stress tensor. On the other hand, the creep strain rate ε̇crij is a function of two

variables i.e. temperature T and the equivalent deviatoric stress q (where q =

√
3

2
sijsij).

Since the potential function of the model is of von-Mises type, the changes in volumetric

strain (i.e. dilation or compression) during the creep deformation cannot be represented by

this model. Therefore, it is more suitable for applications with constant loading below the

dilatancy boundary (e.g. for nuclear waste disposal) Hunsche & Hampel (1999); Hunsche

(1994); Hunsche & Schulze (1994). Moreover, the model has three material parameters

i.e. Ac , Qc and nc , which have to be determined using long-term creep tests. It should

be noted that R is the gas constant which is equal to 8.314 J/mol. The determination of

material parameters for BGRa model is explained in Section. 5.1.

3.3 Model II: a viscoelastic model

This model is known as LUBBY2 model. The model is a viscoelastic model to describe

transient and steady-state creep deformations in ductile regime Heusermann et al. (2003).

The transient creep is represented by Kelvin viscoelastic model consisting of a dashpot

element parallel to a spring. Both dashpot and spring elements in this model are assumed

to be exponential functions of the deviatoric stress q. On the other hand, the steady-state

creep is described by Maxwell viscoelastic model. The Maxwell dashpot element of the
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model has also an exponential dependency on temperature and deviatoric stress. The

model can describe the creep deformation in both constant loading and stepwise loading

(similar to the loading condition in seasonal storage caverns). Similar to the BGRa model,

the changes of inelastic volumetric strain cannot be described by this model. Therefore,

the model does not provide any description regarding dilatancy and damage evolution.

Fig. 3.1 shows the rheological sketch of the model. Where, η̄
k

and η̄m denote the Kelvin

and the Maxwell dashpot coefficients, respectively and Ḡ
k

represents the Kelvin spring

module Heusermann et al. (2003, 1983). This model considers the strain rate as a sum of

two parts, i.e. elastic strain rate ε̇elij and the visco-elastic strain rate ε̇veij .

ε̇ij = ε̇
el

ij + ε̇
ve

ij . (3.2)

The elastic strain is obtained using the generalized Hooke’s law. The material charac-

teristic of the dashpots and springs in this model are stress dependent. The visco-elastic

strain rate in this model is divided into two parts: (1) the transient phase ε
tr

(2) the

steady–state phase ε
ss

. The following equations define the visco-elastic strain rate:

ε̇
ve

ij = ε̇
tr

ij + ε̇
ss

ij ,

ε̇trij =

(
q − Ḡ

k
εtr

η̄
k

)
∂q

∂σij
=

3

2

1

η̄
k

(
1− Ḡ

k
εtr

q

)
sij,

ε̇ssij =
q

η̄m

∂q

∂σij
=

3

2

1

η̄m

sij.

(3.3)

Where sij is the (ij)th element of the deviatoric stress tensor and εtr represents the

equivalent transient strain (i.e. ε̇tr =

√
2

3
ε̇trij ε̇

tr
ij). The stress dependency of the viscoelstic

coefficients is described through the following equations.

η̄
k

= η
k

exp (k2q) , η̄m = ηm exp (mq) exp (lq) , Ḡ
k

= G
k

exp (k1q) . (3.4)

Where η
k
, ηm , G

k
, k1, k2, m and l are material parameters. These parameters are de-

termined through stepwise creep tests with different stress levels. The determination of

material parameters for LUBBY2 model is explained in Section. 5.2.
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Figure 3.1: The rheological sketch of LUBBY2 constitutive model

3.4 Model III: a viscoplastic-creep-damage model

This section is largely taken from Khaledi, Mahmoudi, Datcheva & Schanz (2016b). As

explained in the previous chapter, rock salt exhibits different macro/microscopic behaviors

above and below the dilatancy boundary. When the stress state is in the compressibility

domain (i.e. below the dilatancy boundary), a time-dependent ductile deformation with-

out any visible macroscopic fracture is observed. This time-dependent behavior is highly

affected by the magnitude of the applied load as well as the environmental factors like

temperature. In case the stress state goes above the dilatancy boundary, micro-cracking

and inter-granular slip occur Hunsche & Hampel (1999). Thus, the irreversible volumet-

ric strain increases due to the opening of micro-cracks, and other relevant factors such as

damage, permeability increase and long-term failure become significant in this zone.

To take into account the above-mentioned mechanical properties of rock salt, an elasto-

viscoplastic-creep model combined with damage is introduced in this chapter. Under the

small strain and strain additive assumptions, the total strain rate is defined using the

equation below.

ε̇ij = ε̇elij + ε̇ieij = ε̇elij + ε̇vpij + ε̇crij . (3.5)

Where ε̇elij, ε̇
ie
ij are the elastic and inelastic parts of the total strain rate, respectively.

The reversible instantaneous strain εelij is obtained using the generalized Hooke’s law.

While, the inelastic strain rate is the result of additive superposition of two parts i.e. the

viscoplastic strain rate ε̇vpij and the creep strain rate ε̇crij . These components of strain rate

are explained in the following subsections .

3.4.1 Viscoplastic deformation

In this thesis, the viscoplastic model introduced by Desai in Desai & Varadarajan (1987);

Desai & Zhang (1987) is employed to describe the irreversible rate-dependent deformation
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considering the volumetric dilation and compression. This model which is based on the

classical Perzyna’s viscoplasticity model Perzyna (1966) has the general form as below:

ε̇vpij = µ1

〈
F vp

F0

〉N1
∂Qvp

∂σij
. (3.6)

Where 〈x〉 = (x+ |x|) /2 is the Macauley bracket. The fluidity coefficient µ1 and the

stress exponent N1 are material parameters, and F0 is a reference value with dimension

of the squared stress. F vp and Qvp are the viscoplastic yield and potential functions,

respectively, defined similarly like in Desai & Varadarajan (1987); Desai & Zhang (1987).

That is:

F vp = J2 −
(
−αIn1 + γI2

1

)
[exp (β1I1)− β cos (3θ)]mv , (3.7)

Qvp = J2 −
(
−αqI

n
1 + γI2

1

)
[exp (β1I1)− β cos (3θ)]mv , (3.8)

θ =
1

3
cos

−1

(
−
√

27J3

2J1.5
2

)
, I1 = −σii J2 =

1

2
sijsij, J3 = det(sij). (3.9)

Where γ, β1, β, n and mv are material parameters. Both functions F vp and Qvp are

dependent on three stress invariants i.e. the first invariant of stress tensor I1, the second

invariant of deviatoric stress tensor J2 and the Lode’s angle θ. To allow for cohesion and

tensile strength, the functions in Eqs. 3.7 and 3.8, are expressed in terms of transformed

stress coordinates such that I∗1 = I1 + 3σ
tensile

, where σ
tensile

denotes the tensile strength.

Eqs. 3.7 and 3.8 correspond to an oval-shaped surface illustrated in Figs. 3.2a and 3.2b.

Additionally, two hardening parameters α and αq have been included in these equations

to control the size of viscoplastic yield and potential surfaces in the stress space. The

hardening parameter α which determines the size of yield surface F vp is a function of

accumulated viscoplastic strain ξ defined in Eq. 3.10. In general, the size of viscoplastic

potential surface Qvp could differ from the yield surface F vp by defining αq according to

Eq. 3.11. Applying Eq. 3.11, the viscoplastic strain rate defined in Eq. 3.6 is obtained

through a non-associated flow rule.

α =
a1

ξη
ξ =

∫ t

0

√
ε̇vpij : ε̇vpij dt, (3.10)

αq = α + kv (α0 − α) (1− ξvol/ξ) . (3.11)

Where a1, η are material parameters and ξvol denotes the accumulated volumetric vis-

coplastic strain. Parameter kv in Eq. 3.11 can be a constant value or a stress dependent

function Desai & Zhang (1987). Figs. 3.2c and 3.2d demonstrate how the viscoplastic
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Figure 3.2: Viscoplastic potential and yield functions in the stress space; (a) Viscoplas-
tic potential function Qvp in the principal stress coordinate; (b) Viscoplastic potential
function Qvp in I1 −

√
J2 plane for θ = 60◦, the compression and the dilation behaviors

are separated by dilatancy boundary; (c) Evolution of viscoplastic yield function F vp in
I1 −

√
J2 plane for θ = 60◦, the size of the surfaces is controlled by hardening parameter

α. It has to be noted that α = 0 corresponds to the ultimate envelope or the short-term
failure boundary; (d) Evolution of viscoplastic yield function F vp in I1 −

√
J2 plane for

θ = 0◦.
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Figure 3.3: Short-term failure, dilatancy and viscoplastic yield surfaces in the stress space;
(a) Short-term failure, dilatancy and viscoplastic yield surfaces in the principal stress
space; (b) Evolution of viscoplastic yield surface in the principal stress space; (c) Evolution
of viscoplastic yield surface in the biaxial stress space; (d) Evolution of viscoplastic yield
surface in π-plane.
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yield function F vp evolves in I1 −
√
J2 plane for θ = 60◦ and θ = 0◦, respectively. As

seen from these figures and also Eq. 3.10, by increasing the viscoplastic deformation,

the hardening parameter α reduces. Subsequently, the size of viscoplastic yield surface

isotropically grows up. When α = 0, the ultimate surface or failure boundary is reached

and the material can not carry the load anymore. Fig. 3.2 also shows a boundary passing

through the points in which the variation of volumetric viscoplastic strain is zero (i.e.
∂Qvp

∂I1
= 0). This boundary corresponds to the dilatancy boundary which separates the

dilatancy domain (i.e. ∂Qvp

∂I1
< 0) from compressibility domain (i.e. ∂Qvp

∂I1
> 0). Fig. 3.3

shows the failure and the dilatancy boundaries in principal stress space. The evolution of

viscoplastic yield surface in principal stress space, π−plane and biaxial stress space has

been depicted in this figure as well. The mathematical formulation of dilatancy boundary

can be obtained by solving equation ∂Qvp

∂I1
= 0. Equation below represents the mathemat-

ical equation for viscoplastic dilatancy boundary in the stress space.

J2 = F dil(I1, θ) = (1− 2

n
)γI2

1 (exp (β1I1)− β cos (3θ))mv

{
1 +

mvβ1I1 exp(β1I1)

n(exp(β1I1)− β cos(3θ))

}−1

.

(3.12)

The above-mentioned equation has a complex dependency on stress invariants I1 and θ.

Desai in Desai & Varadarajan (1987) reported that the second term inside the bracket is

negligible. Thus, the mathematical equation of dilatancy boundary can be simplified as

follows:

J2 = F dil(I1, θ) = (1− 2

n
)γI2

1 (exp (β1I1)− β cos (3θ))mv . (3.13)

Fig. 3.4 is a comparison between the original and the simplified dilatancy boundaries. The

simplified dilatancy boundary is used in the next section to define the potential function

of creep strain.

3.4.2 Creep deformation

The irreversible time-dependent deformation is obtained using the following equation:

ε̇crij = µ2 {F cr}N2 ∂Qcr

∂σij
. (3.14)

Eq. 3.14 is the general formulation of the steady-state Norton-Hoff creep law Hunsche

& Hampel (1999); Ślizowski & Lankof (2003). The stress exponent N2 is a material
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Figure 3.4: The original and simplified dilatancy boundaries; (a) Lode’s angle θ = 60◦;
(b) Lode’s angle θ = 30◦; (c) Lode’s angle θ = 0◦

parameter and µ2 denotes a temperature dependent fluidity parameter. The following

function is used to describe the temperature dependency of the creep deformation:

µ2(T ) = µ0 exp

(−Qc

RT

)
, (3.15)

with µ0 denotes the value of fluidity at a reference temperature; R is the universal constant

of perfect gas; Qc is the activation energy and T is the absolute temperature. The creep

yield function of Norton-Hoff model is given by the following equation:

F cr = q =
√

3J2. (3.16)



72 3 Structure of the implemented constitutive models

6040

3
[MPa ]

20060

40

20

2 [MPa ]

40

20

60

0
0

1
[M
P
a]

σ

σ

σ

(a)

I1 [MPa]
0 20 40 60 80 100 120

p J
2

[M
P
a]

0

5

10

15

20

25

30

Iss
1

dilatancy boundary

@Qcr

@I1
< 0

@Qcr

@I1
= 0

@Qcr

@I1
= 0

(b)

I1 [MPa]
0 20 40 60 80 100 120

p J
2

[M
P
a
]

0

5

10

15

20

25

30

35

40

45

,ss=0.0016

,ss=0.0008

,ss=0.0005

,ss=0.0002

,ss=0.0

failure boundary

dilatancy boundary

(c)

I1 [MPa]
0 20 40 60 80 100 120

p J
2

[M
P
a
]

0

5

10

15

20

25

30

35

40

45

dilatancy boundary

,ss=0.0016

,ss=0.0008

,ss=0.0005

,ss=0.0002

,ss=0.0

failure boundary

(d)

Figure 3.5: Creep potential and yield functions in the stress space; (a) Creep potential
function Qcr in the principal stress coordinate; (b) Creep potential function Qcr in I1−

√
J2

plane for θ = 60◦, the constant volume and the dilation behaviors are separated by the
simplified dilatancy boundary; (c) Creep potential surfaces Qcr in I1 −

√
J2 plane for

θ = 60◦, the size of the surfaces is controlled by the parameter αss; (d) Creep potential
surfaces Qcr in I1 −

√
J2 plane for θ = 0◦.
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As seen, the creep yield function F cr is only dependent on the second invariant of devi-

atoric stress tensor. Therefore, for any J2 > 0, a steady-state creep deformation occurs

according to Eq. 3.14. As mentioned before in Section. 3.2, the creep potential function in

Norton-Hoff model (or BGRa model) is independent of the first invariant of stress tensor

I1. For this reason, the time-dependent volumetric deformation cannot be described by

this model. To overcome this limitation, the potential surface introduced in Eq. 3.8 is

included in Eq. 3.14 with some modifications in order to capture the volumetric creep

deformations of rock salt with the same dilatancy boundary as the viscoplastic strain (see

Eq. 3.13). Equation below represents the mathematical formulation of the modified creep

potential function.

Qcr =


J2 − (−αssI

n
1 + γI2

1 ) (exp (β1I1)− β cos (3θ))mv J2 ≥ F dil(I1, θ)

J2 −
(
1− 2

n

)
γ (Iss1 )2 (exp (β1I

ss
1 )− β cos (3θ))mv J2 ≤ F dil(I1, θ)

(3.17)

Fig. 3.5a shows the employed creep potential surface in the principal stress space and

Fig. 3.5b illustrates this surface in I1 −
√
J2 plane. According to Eq. 3.17, in the com-

pressibility domain(i.e. J2 ≤ F dil(I1, θ)), the creep strain has only the deviatoric part

and the volumetric creep deformation is assumed to be zero. This assumption is made

because the volume cannot shrink to zero by the steady-state creep when time goes to

infinity Cristescu (1987). Thus, below the dilatancy boundary, the volumetric component

of the total strain rate is due to the elastic and viscoplastic components only. However,

when the stress state is in the dilatancy domain (i.e. J2 ≥ F dil(I1, θ)), the irreversible

time-dependent dilation occurs and the volumetric creep strain is added to the volumetric

elastic and viscoplastic strains. Additionally, with this assumption, the prediction of long-

term failure becomes more conservative, because, the healing process which reduces the

dilatancy is not taken into account. It should be noted that Iss1 in Eq. 3.17 is the value in

which the dilative part of the creep potential surface meets the constant volume part (see

Fig. 3.5b), and αss is a factor which determines the creep potential surface corresponding

to the current stress state. Figs. 3.5c and 3.5d show the creep potential surface Qvp in

I1 −
√
J2 plane for the θ=60◦ and θ=0◦, respectively. The following equations show how

Iss1 and αss are calculated:

Iss1 =

√
J2/(1−

2

n
)γ (exp (β1I1)− β cos (3θ))mv (3.18)
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αss = kcrαq (3.19)

Where αq is the hardening parameter defined in Eq. 3.11 and kcr is a model parameter

which controls the size of the creep potential surface with respect to the viscoplastic

potential surface.

3.4.3 Damage parameter

Depending on the experimental observations, different definitions exist in the literature

for describing the damage in geomaterials. For example, Hou in Hou (2003) and Ma et

al. in Ma, Liu, Fang, Xu, Xia, Li, Yang & Li (2013) used a stress-dependent function to

describe the tertiary creep of rock salt. According to this definition, the rate of damage

progress during creep test is dependent on the magnitude of stresses applied to the rock

sample as well as of the current accumulated damage. Liu et al. in Liu et al. (2014) showed

that the released energy during loading–unloading cycles increases exponentially above

the dilatancy boundary. They also concluded that, with the onset of volume dilation, the

damage development will be accelerated. Therefore, they proposed an exponential func-

tion for the damage evolution which increases with the released strain energy. In the same

line of thought, Hampel and Schulze in Hampel & Schulze (2007) introduced a damage

parameter whose value grows exponentially with the released volumetric strain energy in

the dilatancy domain. The exponential evolution of damage have been commonly used to

describe the damage process in other types of rock and similar materials. For example,

the damage functions suggested by Frantziskonis and Desai Frantziskonis & Desai (1987)

for concrete, Wang et al. Wang et al. (2007) for argillaceous quartzite and Unteregger et

al. Unteregger et al. (2015) for granite are worth to be mentioned here.

In this thesis, an energetic criterion defined by Cristescu in Cristescu (1993); Cristescu

& Hunsche (1998) is used to quantify damage and micro-cracking. Damage of rock salt

begins when dilatancy of the rock starts to develop. The amount of energy stored during

compression or released during dilatancy is associated to the volumetric inelastic work

per unit volume wvol defined as below:

wvol =

∫ t

0

(
I1

3

)
ε̇ievoldt. (3.20)

The above-mentioned equation quantifies the energy of micro-cracking. In the compress-

ibility domain, the voids and micro-cracks get closed and volume reduces. Therefore,
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mechanical energy is stored in the body and a positive value for wvol is obtained. While,

during dilatancy, the volume increases and energy is released by micro-cracking, there-

fore, wvol becomes negative. When the released energy due to micro-cracking reaches to

a threshold value wf the material failure occurs. To describe the damage evolution in

the dilatancy domain, the following isotropic damage parameter d has been defined as an

exponential function of released energy when dilatancy occurs.

d(wvol) =


0 wvol ≥ 0

1− exp

(
B
(
wvol

wf

)C)
wvol ≤ 0

(3.21)

B and C are model parameters which affect the rate of damage progress and wf is the

maximum released volumetric energy per volume in which the material failure takes place.

The effects of each parameter on the damage evolution have been shown in Fig. 3.6. Based

on the continuum damage mechanics and definition of an effective area, the damage

parameter d is included in the constitutive equations explained in the previous sections

by introducing the effective stress tensor as follows Krajcinovic (1996); Voyiadjis et al.

(1998):

σ̄ =
σ

(1− d(wvol))
, (3.22)

with σ and σ̄ denoting the nominal and the effective stress tensors, respectively.

3.5 Summary

The structure of three employed constitutive models for modeling of rock salt behavior

were introduced in this chapter. The following items summarize the main issues given in

this chapter:

• The BGRa model introduced in Section. 3.2 can describe the steady-state creep

deformation as a function of deviatoric stress and temperature. The model only

describes the ductile behavior of rock salt under constant loading. Therefore, it

can be used for the prediction of long-term deformation in nuclear waste disposal

galleries or oil storage caverns.

• The LUBBY2 model introduced in Section. 3.3 is a viscoelastic model to describe

the transient and the steady-state creep deformation. The model describes the

ductile behavior of rock salt under stepwise loading. Therefore, it can be used for

the prediction of long-term deformation in seasonal storage caverns.
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• The final objective of this study is to describe the behavior of rock salt in renewable

energy storage caverns. These caverns are subjected to different types of loading

conditions. For example, during excavation time, the applied load to the rock salt

medium increases slowly. While, during the cyclic loading operation, the rock salt is

subjected to relatively rapid thermo-mechanical load variations. The viscoplastic-

creep-damage constitutive model introduced in Section. 3.4 combines three existing

models with some modifications to get benefit from their positive features for the

specific purpose of the performed investigation.

• The viscoplastic-creep-damage model can be applied in different types of simulations

in terms of loading conditions (i.e. constant loading, monotonic loading and cyclic

loading) as well as different time scales (i.e. short term or long term).

• The Desai model introduced in Section. 3.4.1 is based on a single-surface plastic-

ity concept which avoids the difficulties regarding numerical implementation. The

employed non-associated flow rule in this model yields to better description of the

volumetric plastic strain. The dependency of the yield surface on Lode’s angle re-

sults in different material responses in triaxial compression, shear and extension

tests. The model takes into account the material dilatancy and compressibility

which enhances the modeling of the volumetric behavior and improves the fit to the

experimental data. In addition, the failure boundary allows the model to account

for the short-term failure of the rock salt in strength tests. Furthermore, the rate de-

pendency described via the viscoplasticity formulation explains the rate dependent

behavior of rock salt.

• To describe the time-dependent behavior of rock salt, the modified creep law in

Section. 3.4.2 has been formulated based on the Norton-Hoff creep law ( i.e. power

law creep) in which the creep strain rate is a function of the applied deviatoric stress

and temperature. In this thesis, the model has been modified by introducing a new

creep potential surface in order to have a better description for the volumetric creep

deformation.

• The damage development in rock salt can be described using the released volu-

metric strain energy. This idea has been employed in this thesis by including an

energy-dependent damage parameter into the constitutive model. A commonly used

function for rock materials has been also employed to describe the damage evolution.

This formulation allows us to describe the strain softening in triaxial strength test,

the tertiary creep in long-term creep tests and the failure in cyclic loading tests.
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Figure 3.6: Parametric study of damage evolution; (a) In this figure the effect of parameter
wf has been shown, B = −0.7, C = 10; (b) In this figure, the effect of parameter B has
been shown, wf = 1.0, C = 10; (a) In this figure the effect of parameter C has been
shown, wf = 1.0, B = −0.7
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4.1 General procedure

The constitutive equations to model the viscoplastic-creep-damage behavior were de-

scribed in the previous chapter. In this chapter, these equations are integrated in an

implicit scheme and the updated value of stress is obtained accordingly.

All quantities at time t are denoted by subscript t, and those at the next time increment

are denoted by t + ∆t. In the Gaussian point level, the total strain increment ∆ε and

the temperature increment ∆T are known for the current time increment ∆t. In a stan-

dard finite element code, this quantities are received from the global Newton-Raphson

algorithm which iteratively satisfies the balance of momentum and the balance of energy

for the continuous medium. Moreover, all the variables such as stress σt , viscoplastic

strain εvp
t

, creep strain εcr
t

, damage parameter dt and other history variables are given at

the beginning of a time step. Therefore, the main objective is to find the value of these

quantities at time t + ∆t, consistent with the constitutive equations mentioned before.

To accomplish this, two subroutines have to be defined in the main finite-element code as

follows:

• “Stress update subroutine”: this subroutine updates the stress at time t + ∆t for

each Gauss point using a Newton-Raphson algorithm.

• “Constitutive model subroutine”: this subroutine contains all the equations related

to the constitutive models. The inputs of this subroutine are stress, temperature and

history variables, while the outputs are associated with the constitutive equations

such as the viscoplastic strain increment ∆εvp, the creep strain increment ∆εcr,

the derivative of viscoplastic strain with respect to stress tensor and temperature

i.e.
∂ε̇vp

∂σ
and

∂ε̇vp

∂T
, the derivative of creep strain with respect to stress tensor and

temperature i.e.
∂ε̇cr

∂σ
and

∂ε̇cr

∂T
as well as the updated value of damage.

In the following sections, these two subroutines are explained more in detail.

79
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4.2 Stress update subroutine

In this section, an implicit integration scheme is utilized to obtain the updated value of

stress at time t+ ∆t. Using the generalized Hooke’s law, the stress increment at time

t+ ∆t can be calculated as follows:

σt+∆t − σt = C
(

∆ε−∆εvp
t+∆t
−∆εcr

t+∆t
− αs(Tt+∆t

− Tt)I
)

(4.1)

where C is the elastic constitutive tensor and I is an identity matrix. For each Gauss point

in the finite element model, the quantities σt, ∆ε and Tt are known. The unknown values

in the right side of the equation, are the viscoplastic strain increment ∆εvp
t+∆t

, the creep

strain increment ∆εvp
t+∆t

and the updated Temperature T
t+∆t

. The viscoplastic and creep

parts of strain tensor are functions of stress and temperature. Therefore, their increments

can be expressed by the following expressions:

∆εvp
t+∆t

=
∂ε̇vp

∂σ
∆t
(
σ

t+∆t
− σt

)
+
∂ε̇vp

∂T
∆t
(
T

t+∆t
− Tt

)
(4.2)

∆εcr
t+∆t

=
∂ε̇cr

∂σ
∆t
(
σ

t+∆t
− σt

)
+
∂ε̇cr

∂T
∆t
(
T

t+∆t
− Tt

)
(4.3)

Substituting Eqs. 4.2 and 4.3 in Eq. 4.1 the stress update formula is obtained as:

σ
t+∆t
−σt = C

(
∆ε−

(
∂ε̇vp

∂σ
+
∂ε̇cr

∂σ

)
(σ

t+∆t
− σt)∆t−

(
∂ε̇vp

∂T
+
∂ε̇cr

∂T

)
(T

t+∆t
− Tt)∆t

)
(4.4)

σ
t+∆t

and T
t+∆t

are the unknown values in the above equation. Temperature T
t+∆t

should

satisfies the energy balance and the heat transfer equations. If we assume that the tem-

perature field is not a function of mechanical variables, then the energy balance and the

heat transfer equations can be solved independent of mechanical equations. However, in

general, the temperature field can be a function of mechanical variables as well. In this

case, the heat equation and Eq. 4.4 have to be solved simultaneously. To accomplish

this, iterative methods such as Newton-Raphson algorithm can be applied to solve the

nonlinear coupled equations and find σ
t+∆t

and T
t+∆t

. The above mentioned procedure is

performed for all Gauss points in the finite element model in order to satisfy the conserva-

tion laws for the whole continuum body. In this section, we assume that the thermal field

has no dependency on stresses and strains. Therefore, the temperature T
t+∆t

is known

and it has been already obtained by solving the energy balance and the heat transfer

equations. In the following, the Newton-Raphson algorithm is formulated to obtain ob-
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tain σ
t+∆t

by solving Eq. 4.4. To achieve this goal, the following residual function has to

be defined. The root of this residual function satisfies the Eq. 4.4.

R(σ
t+∆t

) =

σ
t+∆t
− σt − C

(
∆ε−

(
∂ε̇vp

∂σ
+
∂ε̇cr

∂σ

)
(σ

t+∆t
− σt)∆t−

(
∂ε̇vp

∂T
+
∂ε̇cr

∂T

)
(T

t+∆t
− Tt)∆t

)
(4.5)

According to Newton-Raphson algorithm, the root of residual function R can be itera-

tively found as follows:

σk+1
t+∆t

= σk
t+∆t
−
{
∂R

∂σ

∣∣∣∣
σ=σk

t+∆t

}−1

R(σk
t+∆t

) (4.6)

Where k is the iteration index here. The term
∂R

∂σ
can be obtained by taking derivative

of Eq. 4.5 with respect to σ
t+∆t

as follows:

∂R

∂σ
= I + C

(
∂ε̇vp

∂σ
+
∂ε̇cr

∂σ

)
∆t (4.7)

Substituting Eqs. 4.5 and 4.7 in Eq. 4.6 and using Eqs. 4.2, 4.3 the final stress update

formula is obtained as:



σk+1
t+∆t

= σk
t+∆t
− T1(σk

t+∆t
) T2(σk

t+∆t
)

T1(σk
t+∆t

) =

{
I + C

(
∂ε̇vp

∂σ

∣∣∣∣
σ=σk

t+∆t

+
∂ε̇cr

∂σ

∣∣∣∣
σ=σk

t+∆t

)
∆t

}−1

T2(σk
t+∆t

) = σk
t+∆t
− σt − C

(
∆ε− ∆εvp|σ=σk

t+∆t

− ∆εcr|σ=σk
t+∆t

− αs∆T I
)

(4.8)

The value of σ
t+∆t

in Eq. 4.8 changes iteratively. The iteration continues until the con-

dition ‖R‖ ≤ ε is satisfied. Where ε is a predefined error. It should be noted, the terms
∂ε̇vp

∂σ
,
∂ε̇cr

∂σ
, ∆εvp and ∆εcr in Eq. 4.8 are associated with the constitutive equations. That

means, in each iteration, these values are received from the constitutive model subroutine.

The flow chart shown in Fig. 4.1 describes the connection between the aforementioned

subroutines.
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Inputs: σt, ∆ε, ∆T , ∆t and history variables at time t

k = 0 and σk
t+∆t

= σt

Call “Constitutive model subroutine”

Obtain
∂ε̇vp

∂σ
,
∂ε̇cr

∂σ
, ∆εvp and ∆εcr for σk

t+∆t

Calculate σk
t+∆t

using Eq. 4.8

‖R‖ ≤ ε

Output: σ
t+∆t

σk
t+∆t

=σk+1
t+∆t

k = k + 1

Yes

No

Figure 4.1: The main flowchart of the stress update subroutine

4.3 Constitutive model subroutine

The details regarding the “Constitutive model subroutine” are presented in this section.

As explained before, this subroutine is called by the “Stress update subroutine” in each

Newton-Raphson iteration. Fig. 4.2 represents the main steps of the constitutive model

subroutine. The first item checked within this subroutine is damage parameter d. If dam-

age occurs the nominal stress should be converted to the effective stress through Eq. 3.22.

Otherwise, the calculations proceed with the nominal stress. Then, the hardening param-

eters α, αq, αss are calculated using Eqs. 3.10, 3.11 and 3.19, respectively. Having the

stress and the hardening parameters, the viscoplastic yield function F vp shown in Eq. 3.7

is checked. If F vp ≤ 0, then the stress state is inside the viscoplastic yield surface. In

this case, no viscoplastic strain is generated and the deformation is due to the creep and

elasticity only. In contrast, for F vp > 0, the viscoplastic deformation has to be taken into
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account. Therefore, the viscoplastic strain increment ∆εvp is obtained using Eq. 3.6 as

follows:

∆εvp = ε̇vp∆t = µ1

〈
F vp

F0

〉N1
∂Qvp

∂σ
∆t (4.9)

The derivative of viscoplastic strain rate with respect to stress
∂ε̇vp

∂σ
is another quantity

which is required for the stress update subroutine. The derivation of viscoplastic strain

rate is calculated using following equations:

∂ε̇vp

∂σ
=
µ1N1

F0

〈
F vp

F0

〉N1−1

∂F vp

∂σ

∂Qvp

∂σ
+ µ1

〈
F vp

F0

〉N1
∂2Qvp

∂σ2
(4.10)

∂F vp

∂σ
=
∂F vp

∂I1

∂I1

∂σ
+
∂F vp

∂J2

∂J2

∂σ
+
∂F vp

∂J3

∂J3

∂σ
(4.11)

∂Qvp

∂σ
=
∂Qvp

∂I1

∂I1

∂σ
+
∂Qvp

∂J2

∂J2

∂σ
+
∂Qvp

∂J3

∂J3

∂σ
(4.12)

Similar to the viscoplastic strain, the creep strain increment ∆εcr and the derivative of

creep strain rate with respect to stress
∂ε̇cr

∂σ
are obtained as follows:

∆εcr = ε̇cr∆t = µ2 {F cr}N2 ∂Qcr

∂σ
∆t (4.13)

∂ε̇cr

∂σ
= µ2N2 {F cr}

N2−1 ∂F cr

∂σ

∂Qcr

∂σ
+ µ2 {F cr}N2 ∂2Qcr

∂σ2
(4.14)

∂F cr

∂σ
=
∂F cr

∂I1

∂I1

∂σ
+
∂F cr

∂J2

∂J2

∂σ
+
∂F cr

∂J3

∂J3

∂σ
(4.15)

∂Qcr

∂σ
=
∂Qcr

∂I1

∂I1

∂σ
+
∂Qcr

∂J2

∂J2

∂σ
+
∂Qcr

∂J3

∂J3

∂σ
(4.16)

At the end, the released volumetric energy per unit volume wvol shown in Eq. 3.20 is

updated and the stress is converted to the nominal stress again.
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4.4 Summary

In this chapter, the general procedure to implement the viscoplastic-creep-damage model

in a standard finite element code has been presented. The main objective in this chapter is

to provide an implicit scheme to update the stress tensor and other constitutive variables.

To accomplish this, two subroutines, i.e. (1) stress update subroutine and (2) constitutive

model subroutine, have been added to the finite element code “Code-Bright”. The stress

update subroutine updates the stress at each time step for each Gauss point using a

Newton-Raphson algorithm. The constitutive model subroutine contains all the equations

related to the constitutive models. The inputs of this subroutine are stress, temperature

and history variables, while the outputs are associated with the constitutive equations.

The interaction between these two subroutines has been explained in the current chapter.
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Inputs: σ, T , ∆t and history variables

Calculate the damage parameter d using Eq. 3.21

d > 0
Convert stress to effective stress
using Eq. 3.22: σ = σ/(1− d)

Calculate α, αq, αss using Eqs. 3.10, 3.11 and 3.19, respectively

Calculate F vp using Eq. 3.7

F vp > 0
Calculate ∆εvp using Eq. 4.9

Calculate
∂ε̇vp

∂σ
using Eq. 4.10

Calculate ∆εcr using Eq. 4.13

Calculate
∂ε̇cr

∂σ
using Eq. 4.14

Update wvol using Eq. 3.20

Covert stress to nominal stress; σ = (1− d)σ

Outputs: ∆εvp, ∆εcr,
∂ε̇vp

∂σ
,
∂ε̇cr

∂σ

Yes

No

Yes

No

Figure 4.2: The main flowchart of the constitutive model subroutine





5 Determination of material parameters

5.1 Determination of material parameters for BGRa

model

As shown in Section. 3.2, the BGRa model has three material parameters which should

be determined using long-term creep tests. These parameters are the coefficient Ac , the

activation energy Qc and the stress exponent nc . Since the model represents the steady-

state creep deformation, only those experiments which reach to the steady-state condition

have to be utilized for the determination of BGRa parameters. As Hunsche & Hampel

(1997) pointed out, different types of rock salt may exhibit different creep behaviors.

In fact, the steady-state creep rates observed for different types of the rock salt can

show a difference of more than a factor of 100. These differences are associated with

the distribution of microscopic impurities within the grains, not with the total amount

of the impurity mass Hunsche & Hampel (1997). With this explanation, it is expected

that the rock samples obtained from different locations have different creep parameters.

In this section, the BGRa creep parameters are back calculated using a series of creep

tests performed on samples from Asse mine (northern Germany). Fig. 5.1 shows the

experimentally obtained steady-state creep rates versus the applied deviatoric stresses for

different temperatures. Each discrete point in this figure corresponds to a single creep

experiment. The unknown parameters Ac , Qc and nc can be determined for this type of

rock salt by minimizing the following function:

min
N∑
i=1

∣∣∣∣Ac exp

(
Qc

RTi

)
q
nc
i − ε̇

experiment

i

∣∣∣∣ (5.1)

This function shows the misfit between the calculated strain rates by BGRa model and the

measured strain rates in experiments. Therefore, the most suitable creep parameters are

those which minimize this misfit function. Here, N is the total number of experimental

data and the term |x| shows the absolute value of x. The first term inside the absolute

87
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Figure 5.1: Steady-state creep rate versus applied deviatoric stresses for different temper-
atures; creep tests have been performed on samples from Asse mine (northern Germany);
test data from Hunsche & Hampel (1997)

brackets indicates the steady-state creep rate calculated by BGRa model for the ith creep

experiment, while the second term is the corresponding experimental data. Fig. 5.1 shows

also the steady-state creep rates calculated by BGRa model. The creep parameters have

been determined using the above-mentioned procedure. The identified parameters for this

type of rock salt are: Ac = 0.2 day−1, Qc = 76350 KJ/mol and nc = 7.

5.2 Determination of material parameters for LUBBY2

model

As explained in Section. 3.3, the LUBBY2 model is a viscoelastic model with 7 parameters.

The model takes into account both transient and steady-state deformations. Therefore,

stepwise creep tests with different stress levels can be used to determine the model pa-

rameters. In stepwise creep tests, the stress applied to the sample remains constant for a

while. Then, it increases to another constant level. At each stress level, first, a transient

creep deformation is observed. At this step, the creep strain rate reduces significantly

due to the strain hardening. The strain rate finally reaches to a constant value which is

corresponding to the steady-state creep deformation. Fig. 5.2 shows a stepwise uniaxial

creep test performed by Heusermann et al. (2003). As it is seen, the stress is applied to
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Figure 5.2: Uniaxial stepwise creep test at constant temperature (experimental data from
Heusermann et al. (2003)); (a) Axial strain versus time (b) Strain rate versus time

the sample in three successive steps i.e. 12 MPa, 14 MPa and 16 MPa. Figs. 5.2a and

5.2b show the changes of axial strain and axial strain rate versus time. The LUBBY2

parameters have been determined for this experiment by curve fitting procedure, which

minimizes the errors between results of the laboratory tests and the corresponding results

predicted by the numerical model. The obtained material parameters for this experiment

are shown in Table. 5.1. As shown in this table, the parameter l which is related to the

temperature dependency of the steady-state creep has been set to 0 for this experiment.

The reason for this assumption is that, the laboratory data given in Heusermann et al.

(2003) have been obtained at a constant temperature which is not enough to determine

parameter l. To overcome this problem, the steady-state creep tests at different temper-

atures have to be to used to describe the temperature dependency of the model. For this

reason, the steady-state creep data shown in Fig. 5.1 are utilized to calibrate the param-

eters associated with the Maxwell model i.e. m, ηm and l. The results of this calibration

have been shown in Fig. 5.3. Table. 5.1 provides the material parameters obtained for

this set of laboratory data.

5.3 Determination of material parameters for the

viscoplastic-creep-damage model

The section at hand is mainly taken from Khaledi, Mahmoudi, Datcheva & Schanz

(2016b). The material parameters related to the viscoplastic-creep-damage model ex-

plained in the previous chapter can be identified from laboratory experiments. In partic-
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Figure 5.3: Steady-state creep rate versus applied deviatoric stresses for different temper-
atures; creep tests have been performed on samples from Asse mine (northern Germany);
test data from Hunsche & Hampel (1997)

Table 5.1: The identified parameters for LUBBY2 model

k1 k2 m ηk ηm Gk l
[1/MPa] [1/MPa] [1/MPa] [MPa.d] [MPa.d] [MPa] [1/K]

Test data from -0.257 -0.267 -0.275 9.6e5 6.0e7 2.2e5 0
Heusermann et al. (2003)

Test data from -0.257 -0.267 -0.3262 9.6e5 2.8e19 2.2e5 0.08
Hunsche & Hampel (1997)

ular, monotonic triaxial compression and extension tests, long-term creep tests as well as

cyclic loading tests are required for determining the material parameters of the model. It

is obvious that the process of material parameter identification becomes more accurate if

these experiments are performed on similar rock samples. Unfortunately, such a data set

which comprises all the required experiments for a single type of rock salt is not available.

Therefore, in this thesis, a number of laboratory tests have been adopted from references

Hunsche & Hampel (1999), Desai & Varadarajan (1987), Minkley & Muehlbauer (2007)

and Guo et al. (2012) to examine the capability of the employed constitutive model in

describing the stress-strain relation under different loading conditions. Since these tests

have been performed on different rock specimens from different locations (i.e Sonderhausen
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mine, Salado mine, Jintan mine and Asse mine) and also different testing conditions have

been utilized (e.g. different loading rates are used), the material parameters are deter-

mined for each type of rock separately. The following steps have been carried out in order

to determine the required parameters.

The common values for elasticity parameters of rock salt in the literature are E = 25000

MPa and ν = 0.27. Applying these values, the bulk and shear moduli are obtained as

K = 18115 MPa and G = 9842 MPa. Parameter γ is related to the failure boundary of

rock salt in the short-term strength tests. Different factors such as the amount of impu-

rities in the rock salt sample as well as the test conditions may affect the strength of rock

sample. Depending on the type of rock salt, a value in the range of 0.09 to 0.12 is suggested

for this parameter. Fig. 5.4a is a comparison between the applied failure boundary in this

study with γ = 0.095 and four other failure boundaries in the literature. These failure

boundaries which have been defined for the triaxial compression tests consist of Cristescu

failure boundary, Drucker-Prager criterion, Hoek-Brown criterion and Mohr-Coulomb cri-

terion. As seen, the employed failure boundary in this work has a good agreement with

other failure boundaries, in particular, with the empirical non-linear failure boundaries

(i.e. Cristescu and Hoek-Brown failure boundaries). Parameters β, β1 and mv determine

how the failure boundary changes with respect to the Lode’s angle θ. The suggested

values by Desai in Desai & Varadarajan (1987) have been adopted for these parameters.

To examine the validity of selected parameters, the variation of failure boundary with re-

spect to Lode’s angle θ has been compared with the rock salt strength data obtained from

triaxial compression, shear and extension tests (test data from Cristescu & Gioda (1994)).

Fig. 5.4b shows that the model failure boundaries can satisfactorily predict the rock salt

strength in different tests. Parameter n defines the location of dilatancy boundary in the

stress space. Fig. 5.5 compares the applied dilatancy boundary in this thesis (assuming

n = 3) with four empirical dilatancy boundaries reported in references Günther & Salzer

(2007), Hampel & Schulze (2007), Alkan et al. (2007) and Spiers et al. (1988). As seen,

the dilatancy boundary formulated in Eq. 3.13 fits well with the experimentally based

dilatancy boundaries.

Parameters µ1 and N1 are associated to the rate-dependent behavior of rock salt. The

values suggested by Desai in Desai & Varadarajan (1987) have been adopted in this thesis.

The hardening behavior of rock salt is described by parameters a1 and η introduced in

Eq. 3.10. Depending on the type of the rock salt and the testing condition, the harden-

ing response of rock salt could be different from one case to another. These parameters

are obtained by curve fitting procedures, which minimize the errors between results of
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Figure 5.4: Comparison between (a) different failure boundaries defined for rock salt;
Cristescu failure boundary Cristescu (1993), Drucker-Prager criterion Ma, Liu, Fang, Xu,
Xia, Li, Yang & Li (2013), Hoek-Brown criterion Ma, Liu, Fang, Xu, Xia, Li, Yang & Li
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Figure 5.6: Triaxial compression test of Sonderhausen rock salt under different confining
pressures (a) stress-strain relation (b) volumetric strain-axial strain curves (test data from
Minkley & Muehlbauer (2007))

laboratory tests and the respective results of numerical recalculation of the laboratory

experiments. In this thesis, the non-associative flow rule is used to describe the material

behavior. As it is explained later, parameter kv in Eq. 3.11 which affects the volumetric

viscoplastic strain rate has been defined as a function of confining pressure. Parameters

µ0, Qc and N2 are associated to the creep behavior of rock salt. These values are obtained

by fitting the numerical recalculation curve with the laboratory creep data. The dam-

age parameters, i.e. B, C and wf , have been identified from the failure and post-failure

behavior of rock salt in the triaxial compression tests. The experimental data employed

in this study show that the parameter wf changes with confining pressure. Therefore, a

function which is dependent on the minimum principal stress has been defined to describe

the variation of wf with respect to the confining pressure.

In order to model the stress-strain relation in the following tests, a 3D numerical sim-

ulation has been performed at integration point level employing an implementation of

described model in a finite element subroutine (Code-Bright). The first set of data used

in this chapter deals with the triaxial compression test with different confining pressures

(i.e. σ3 =0.5, 1, 2.5, 4 and 7 MPa). These tests have been performed on specimens from

Sonderhausen mine in Germany under the constant strain rate ε̇ = 1× 10−5 s−1 and the

constant temperature T = 30 ◦C Minkley & Muehlbauer (2007). The experimental data

as well as the stress-strain curves obtained from numerical recalculation have been shown

in Fig. 5.6a. Additionally, the volumetric deformations versus the axial strain have been

depicted in Fig. 5.6b. Since the duration of each test is in the range of a few hours, the
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Figure 5.7: Calculation of hardening parameters a1 and η for the experiment shown in
Fig. 5.6

creep deformation is negligible. Thus, this set of data is used to identify the viscoplastic

and damage parameters according to the procedure explained before. As seen, the model

can adequately predict the evolution of dilatancy and short-term failure as well as the

post-failure behavior. Having the experimental data for stress and strain, the hardening

parameters a1 and η have been calculated as shown in Fig. 5.7. In addition, it should be

noted that this set of data has been used in this thesis to obtain the dependency of param-

eters kv and wf on the confining pressure σ3. Figs. 5.8b and 5.8a represent the changes

of parameters kv and wf with respect to the confining pressure for the above-mentioned

experiment.

The second set of experimental data is related to the triaxial extension test which was

reported by Desai in Desai & Varadarajan (1987). Fig. 5.9a shows the stress-strain relation

of rock salt during the triaxial extension test for confining pressures σ3 =27.5 and 37.9

MPa. The rock salt specimens used for this testing have been obtained from Salado mine

in USA. The tests have been performed under constant loading rate. For this reason,

the post-failure behavior is not captured neither in the experiment nor in the numerical

simulation. The third data set used in this chapter is related to a long-term creep test

conducted by Hunsche et al. Hunsche & Hampel (1999) on a sample from Sonderhausen

mine in Germany. The test has been performed at the constant temperature T = 45 ◦C

(close to the rock salt temperature at the depth of 1000 m). This set of data is used

in this chapter to identify material parameters of the creep model. The obtained results

shown in Fig. 5.9b demonstrate that the time-dependent response of the rock salt can be

appropriately described by the selected model. Another experimental data set reported in

Minkley & Muehlbauer (2007) is selected to verify the time-dependent volumetric stain as
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Figure 5.8: The changes of parameters (a) wf and (b) kv with respect to the applied
confining pressure for the experiment shown in Fig. 5.6

well as the description of transient creep. The experiment is related to a creep test with

the axial stress σ1=41 MPa and the confining pressure σ3=3 MPa performed on a rock salt

sample from Asse mine in Germany. Fortunately, the experimental results for both axial

and volumetric deformations have been reported in Minkley & Muehlbauer (2007). The

obtained results from numerical modeling are shown in Figs. 5.9c and 5.9d. Because of the

time scale of the experiment, the transient part of creep can be clearly observed during

the first day of the experiment. The transient creep is modeled using the viscoplastic

law described in Section. 3.4.1. When the sample is loaded, because of the viscosity, the

stress state lies beyond the viscoplastic yield surface. If the load remains constant, the

viscoplastic deformation continues with time and the strain hardening takes place until

the viscoplastic yield surface reaches the stress point. After that, the viscoplastic strain

rate is zero (end of the transient creep) and the deformation continues steadily by the

modified form of Norton-Hoff creep law explained in Section. 3.4.2. As seen, during the

steady-state phase, the volumetric strain increases as well. Since the stress state is inside

the dilatancy zone, the released inelastic volumetric energy due to microcracking increases

with time. Finally, when the damage reaches the threshold value, the tertiary creep is

experienced.

The viscoplastic-creep-damage model in this study is also used to model the cyclic response

of rock salt around the caverns. Therefore, it should be able to describe the mechanical

behavior of rock salt under cyclic loading condition. The fifth laboratory test used in

this chapter describes the cyclic loading response of rock salt. Fig. 5.10a shows the

experimental stress-strain curve of Jintan rock salt under uniaxial cyclic loading reported

by Guo et al. in Guo et al. (2012). As shown in this figure, the axial stress monotonically
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Figure 5.9: (a) Triaxial extension test of Salado rock salt under confining pressures σ3 =
27.5, 37.9 MPa (test data from Desai & Varadarajan (1987)), (b) Long-term creep test
of Sonderhausen rock salt under different axial loads (test data from Hunsche & Hampel
(1999)), (c) variation of axial strain in creep test for Asse mine rock salt (test data from
Minkley & Muehlbauer (2007)), (d) variation of volumetric strain in creep test for Asse
mine rock salt (test data from Minkley & Muehlbauer (2007))

increases from 0 to 22.5 MPa (90% of compressive strength), then, it varies between 11.25

and 22.5 MPa. Figs. 5.10b and 5.10c represent the results obtained from numerical

simulation of the laboratory tests. As seen, the employed constitutive model adequately

reproduces the stress-strain relation under cyclic loading condition. On the other hand,

the plotted axial strain versus time in Fig. 5.10c shows that the whole cyclic loading

process can be divided into three stages. In the first stage, the axial strain increases

rapidly and there is a large accumulation of strain. Then, in the second stage, the axial

strain accumulates slowly with a relatively constant rate and finally, after a number of

cycles, the axial strain increases considerably and the specimen reaches the fatigue failure.

Fatigue failure occurs when the strain energy exceeds a critical energy level equivalent to
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failure under non-cyclic load Ma, Liu, Wang, Xu, Hua, Fan, Jiang, Wang & Yi (2013);

Attewell & Farmer (1973). As shown, the model can adequately describe the three stages

of the strain accumulation process resulted from cyclic loading. The parameters required

to fit the simulation curves with experimental data are given in Table 5.2.

Table 5.2: The viscoplastic-creep-damage model parameters for different rock salts
Identified parameters for the viscoplastic-creep-damage model using different types of rock salt

Sonderhausen Salado Jintan Asse mine

Elastic parameters
K [MPa] 18115 18115 18115 18115
G [MPa] 9842 9842 9842 9842

Viscoplastic parameters

µ1 [day−1] 5.06e-7 5.06e-7 5.06e-7 5.06e-7
N1 3 3 3 3
n 3 3 3 3
a1 [MPa2−n] 0.00005 0.00005 0.00009 0.00004
η 0.7 0.7 0.7 0.6
β1 [MPa−1] 4.8e-3 4.8e-3 4.8e-3 4.8e-3
β 0.995 0.995 0.995 0.995
mv -0.5 -0.5 -0.5 -0.5
γ 0.11 0.095 0.095 0.11
F0 [MPa2] 1 1 1 1
kcr 1 1 1 1.43
σ

tensile
[MPa] 1.8 1.8 1.8 1.8

Creep parameters

µ0 [day−1] 0.27 0.27 0.27 0.27
Qc [kJ/mol] -54000 -54000 -54000 -54000
N2 4.0 4.0 4.0 4.15

Damage parameters
B -0.7 -0.7 -0.7 -0.8
C 10 10 10 9
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(a)

(b)

(c)

Figure 5.10: (a) Uniaxial cyclic loading test of Jintan rock salt (test data from Guo et al.
(2012)) (b) uniaxial cyclic loading stress-strain curve obtained from numerical simulation
(c) evolution of axial strain with time obtained from numerical simulation
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5.4 Parametric study of the viscoplastic-creep-damage

model

In this section, a parametric study is carried out to assess the performance of the viscoplastic-

creep-damage model in different loading conditions. In addition to this, some of the key

factors influencing the model responses are introduced and their effects are qualitatively

represented. To achieve this goal, the performance of the viscoplastic-creep-damage model

in triaxial quasi-static tests, long-term creep tests and cyclic loading tests is numerically

investigated. That means, a number of numerical simulations are performed in the inte-

gration point level in order to reproduce the laboratory conditions. The parametric study

begins with the numerical simulation of triaxial quasi-static tests. Then, it continues with

the modeling of creep tests and cyclic loading tests. In each simulation, only one of the

influencing factors is changed and the rest remain constant. The influencing factors can

be either the material parameters or the boundary conditions. In all simulations, the

material parameters shown in Table. 5.3 are considered as the predefined values. The

boundary conditions applied to the rock samples in these simulations are as follows:

• The confining pressure applied to the rock sample in all simulations is assumed to

be 4 MPa.

• The triaxial quasi-static tests are performed under constant strain rate. The applied

strain rate to the rock salt sample in all simulations is 1× 10−5s−1 (except those in

which the effect of strain rate on the model response is investigated).

• All simulations are performed under constant temperature of 40 ◦C (except those

in which the effect of temperature on the model response is investigated).

• The cyclic loading tests are performed under load-controlled conditions. The fre-

quency of cyclic loads in all simulations is assumed to be 1× 10−3 Hz (except those

in which the effect of cyclic frequency on the model response is investigated).

Among the material parameters which were introduced in Section. 3.4, the parameters

γ, n, kv, µ1, wf have been selected for this parametric study. Parameter γ is associated

with the locus of short-term failure boundary in the stress space. Its effect on the model

response in triaxial quasi-static tests has been shown in Fig. 5.11. Parameter n is related

to the locus of dilatancy boundary in the stress space. Fig. 5.12 describes the effect of

parameter n on the model response in triaxial strength tests. In a similar manner, the

influences of parameters kv, µ1, wf have been demonstrated in Figs. 5.13 to 5.16. On the

other hand, the strain rate and the temperature applying to the rock salt sample in the
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triaxial quasi-static tests can be considered as two key factors that may affect the response

of the model. The effect of these two factors on the model behavior have been shown in

Figs. 5.17 and 5.18. Regarding the creep behavior, the model responses with respect to

the applied deviatoric stress and the temperature have been investigated. The results of

these studies are shown in Figs. 5.19 and 5.20. Finally, the performance of the model in

cyclic loading tests has been investigated. To accomplish this, several key factors such as

maximum and minimum applied stresses during cyclic loading, frequency of cycles and

temperature are considered. Figs. 5.21 to 5.28 represent the results of parametric study

for the cyclic loading.

Table 5.3: Predefined material parameters of rock salt for the parametric study

Elastic parameters
K [MPa] 18115
G [MPa] 9842

Viscoplastic parameters

µ1 [day−1] 5.0e-7
N1 3
n 3
a1 [MPa2−n] 0.00005
η 0.7
β1 [MPa−1] 4.8e-3
β 0.995
mv -0.5
γ 0.11
F0 [MPa2] 1
kcr 1
σ

tensile
[MPa] 1.8

Creep parameters

µ0 [day−1] 0.2
Qc [kJ/mol] -76350
N2 6.0

Damage parameters
B -0.7
C 10
wf [MJ/m3] 1.59
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Figure 5.11: The effects of parameter γ on the model response in triaxial strength tests
have been shown in these figures. In general, this parameter is related to the short-term
failure boundary of rock salt in quasi-static tests; (a) This figure shows the stress-strain
relations in a triaxial compression test for three different values of γ. The confining
pressure and the strain rate in these simulations are 4 MPa and 1× 10−5s−1, respectively.
As seen, the peak strength value reduces by decreasing the γ value. It should be noted that
the damage evolution has not been taken into account in these simulations. Therefore, no
softening is seen in the model responses; (b) This figure shows the corresponding stress
path for the same simulation in p− q stress space. As seen, the locus of short-term failure
boundary in stress space can be adjusted by parameter γ; (c) This figure shows the stress-
strain relations with damage evolution. The parameters related to the damage evolution
are similar for all three curves. The peak strength is reached faster as the γ value reduces;
(d) This figure represents the changes of the volumetric strain with respect to the axial
strain for different γ values. As seen, for a certain value of axial strain, more dilatancy
is observed as the parameter γ reduces. Since the evolution of damage is related to the
dilatancy, the smaller values of γ result in the higher damage values.
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Figure 5.12: The effects of parameter n on the model response in triaxial strength tests
have been shown in these figures. In general, this parameter is related to the onset of
dilatancy in quasi-static tests; (a) This figure shows the stress-strain relations in a triaxial
compression test for three different values of n. As seen, the peak strength value remains
relatively constant as the parameter n changes. However, the axial stain at failure reduces
by decreasing the n value (b) This figure represents the volumetric strain versus the axial
strain for different n values. As the parameter n reduces, the onset of dilatancy is reached
faster, and subsequently, the dilatancy and damage progress become more significant.
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Figure 5.13: The effects of parameter kv on the model response in triaxial strength tests
have been investigated in this numerical example. In general, this parameter controls the
size of the viscoplastic potential surface; (a) This figure shows the stress-strain relations
in a triaxial compression test for three different values of kv. As seen, as parameter kv
reduces the softening is observed at smaller values of axial strain; (b) This figure shows
how the evolution of the volumetric strain can be adjusted by changes of kv value. In
other words, the size of viscoplastic potential surface can be controlled by this parameter.
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Figure 5.14: The effects of fluidity parameter µ1 on the model response in triaxial strength
tests have been investigated. In general, this parameter is the inverse of viscosity; (a) This
figure shows the stress-strain relations in a triaxial compression test for three different
values of µ1. Smaller values of fluidity results in higher viscosity, and subsequently, more
ductile deformation is observed. That means, the material softening occurs at higher axial
strains; (b) This figure shows that, by decreasing the fluidity parameter µ1 (or increasing
the viscosity), the dilatancy decreases. This reduction is due to the increase of ductility.
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Figure 5.15: The effects of parameter wf on the model response in triaxial strength tests
have been investigated in this numerical example. This parameter is equal to the released
volumetric energy per volume at peak strength and it affects the damage evolution. There-
fore, the onset of softening can be adjusted by this parameter; (a) This figure shows the
stress-strain relations in a triaxial compression test for different values of wf . As it can
be seen, no damage is observed for large values of wf . As the parameter wf reduces the
material becomes more brittle and softening occurs faster; (b) This figure represents the
changes of the volumetric strain with respect to the axial strain for different wf values.
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Figure 5.16: Damage evolution versus released volumetric energy per volume for the nu-
merical example shown in Figure. 5.15
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Figure 5.17: In general, as the strain rate decreases the material ductility increases. There-
fore, for very small stain rates no softening takes place; (a) Stress-strain relations for
different strain rates without damage (b) The corresponding stress path in p − q stress
space; (c) Stress-strain relations with damage; (d) Volumetric strain versus axial strain.
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Figure 5.18: The effects of temperature on the model response in triaxial strength tests
are shown in these figures. In general, as the temperature increases the rock salt behavior
becomes more ductile. That means, at higher temperatures, the inter-granular mecha-
nisms that control the creep deformation take the dominating role. Under such condition,
the damage evolution resulted from the opening of microcracks becomes slower. At high
temperatures, the deformation is more carried by the creep term which is highly tempera-
ture dependent; (a) This figure shows the stress-strain relations for different temperatures
without damage. As seen, by increasing temperature, the peak stress reduces; (b) The
corresponding stress path in p − q stress space; (c) This figure shows the stress-strain
relation considering damage. As it is seen, softening occurs at higher axial strains and
lower peak strength. At very high temperature (i.e. T = 250 ◦C), the rock salt sample
becomes a perfectly ductile material and no softening is observed; (d) This figure shows
the volumetric strain versus axial strain for different temperatures.
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Figure 5.19: The effects of deviatoric stress on creep behavior have been shown in these
figures; (a) The axial strain versus time is depicted in this figure. As seen, when the
equivalent deviatoric stress q is equal to 86% of its peak value (i.e. qf ), the tertiary
creep occurs after almost 15 days. As the applied deviatoric stress reduces, the failure
is observed after a longer time. Finally, when the stress state lies below the dilatancy
boundary (e.g. q = 0.43 qf ), the rock salt exhibits only a steady-state deformation without
any failure; (b) This figure represents the development of volumetric strains. As seen, the
dilatancy develops significantly faster when the magnitude of the applied deviatoric stress
increases.

(a) (b)

Figure 5.20: The effects of temperature on creep behavior have been shown in these figures;
(a) The axial strain versus time is depicted in this figure. The equivalent deviatoric stress
q is equal to 43% of its peak value (i.e. qf ) for the three cases.That means, the stress
state lies below the dilatancy boundary. Therefore, the rock salt exhibits steady-state
deformations without any failure but with different rates. It is obvious that at elevated
temperatures the steady-state creep rate increases significantly ; (b) In order to emphasis
the effect of temperature on creep behavior, the boundary conditions related to the three
numerical examples in Fig. 5.20a are marked in Fig. 5.1.
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(a) (b)

Figure 5.21: The effect of maximum applied stress in cyclic loading test is shown in these
figures. In this example, first, the applied stress to the sample increases monotonically up
to ca. 95 % of its peak value in quasi-static test (i.e. qmax = 95% qf ). This step has been
performed with constant strain rate of 1× 10−5s−1 and the temperature is 40 ◦C. Then,
the cyclic loading has been modeled with the frequency of 1× 10−3 Hz. The amplitude of
each cycle is equal to 15 MPa; (a) The stress-strain curve for the cyclic loading is shown
in this figure. The failure occurs after ca. 930 cycles; (b) The development of volumetric
strain is shown in this figure.

(a) (b)

Figure 5.22: The effect of maximum applied stress in cyclic loading test is shown in these
figures. In this example, first, the applied stress to the sample increases monotonically up
to ca. 89 % of its peak value in quasi-static test (i.e. qmax = 89% qf ). This step has been
performed with constant strain rate of 1× 10−5s−1 and the temperature is 40 ◦C. Then,
the cyclic loading has been modeled with the frequency of 1× 10−3 Hz. The amplitude of
each cycle is equal to 15 MPa; (a) The stress-strain curve for the cyclic loading is shown
in this figure. The failure occurs after ca. 4300 cycles; (b) The development of volumetric
strain is shown in this figure.
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(a) (b)

Figure 5.23: In this example, first, the applied stress to the sample increases monotonically
up to ca. 65% of its peak value in quasi-static test (i.e. qmax = 65 %qf ). This step has been
performed with constant strain rate of 1× 10−5s−1 and the temperature is 40 ◦C. Then,
the cyclic loading has been modeled with the frequency of 1× 10−3 Hz. The amplitude of
each cycle is equal to 15 MPa; (a) The stress-strain curve for the cyclic loading is shown
in this figure. No cyclic failure is observed after 14000 cycles; (b) The development of
volumetric strain is shown in this figure. The volumetric strain has still an upward trend,
but it has not reached to its critical value. This shows that the maximum stress in cyclic
loading lies in the dilatancy zone. Therefore, it is expected to meet the cyclic failure after
a larger number of cycles. As explained before, the constitutive model shows no cyclic
failure if the maximum stress in cyclic loading is below the dilatancy boundary.

(a) (b)

Figure 5.24: In this example, the minimum applied stress shown in Fig.5.21 is increased.
To accomplish this, the amplitude of each cycle reduces to 7.5 MPa with the frequency of
1×10−3 Hz. Therefore, in comparison to Fig.5.21, the minimum applied deviatoric stress
increases to 36.5 MPa ; (a) The stress-strain curve for the cyclic loading is shown in this
figure. The failure occurs after ca. 570 cycles. As the minimum applied stress increases
the average stress applied to the sample increases as well. Therefore, the cyclic failure is
experienced faster; (b) The development of volumetric strain is shown in this figure.
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Figure 5.25: Damage evolution with respect to the number of cycles for the examples
shown in Figs. 5.21 to 5.24. It is clear from this figure that as the maximum applied
stress in cyclic loading decreases the damage evolution slows down significantly.

(a) (b)

Figure 5.26: In this example, the frequency of cycles for the example shown in Fig. 5.23
has been reduced to 1.38 × 10−5 Hz; (a) The stress-strain curve for the cyclic loading is
shown in this figure. The cyclic failure occurs after ca. 1400 cycles. As the frequency of
cycles reduces, the stress can remain for a longer time in the dilatancy zone. Therefore,
more damage and dilatancy occur during each cycle. However, the axial strain at failure
increases in this case, which is due to the increase of creep deformation; (b) The develop-
ment of volumetric strain is shown in this figure. As seen, unlike the example shown in
Fig. 5.23, the volumetric strain reaches to a critical value after ca. 1400 cycles.
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(a) (b)

Figure 5.27: In this example, the applied temperature to the rock salt sample shown in
Fig. 5.23 increases to 100 ◦C; (a) The stress-strain curve for the cyclic loading is shown
in this figure. The cyclic failure occurs after ca. 950 cycles. As the temperature increases,
the damage progress in the dilatancy zone becomes faster. Therefore, in comparison to
Fig. 5.23, the cyclic failure is reached after a lower number of cycles. However, the axial
strain at failure increases in this case, which is due to the increase of creep deformation;
(b) The development of volumetric strain is shown in this figure. As seen, unlike the
example shown in Fig. 5.23, the volumetric strain reaches to a critical value after ca. 950
cycles.
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Figure 5.28: Damage evolution with respect to the number of cycles for the examples
shown in Figs. 5.26 and 5.27. It is clear from this figure that by increasing temperature
or decreasing the frequency of cycles the damage evolution accelerates.
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5.5 Summary

The following items summarize the main issues given in this chapter:

• The BGRa model has three material parameters which should be determined using

long-term creep tests. To accomplish this, the BGRa creep parameters were back

calculated using a series of steady-state creep tests existing in literature performed

on samples from Asse mine. The employed experimental data were obtained using

different deviatoric stresses and different temperatures.

• The LUBBY2 model has seven parameters. The model takes into account both tran-

sient and steady-state deformations. Therefore, stepwise creep tests with different

stress levels have been used to determine the model parameters.

• The material parameters related to the viscoplastic-creep-damage model explained

in the previous chapter have to be determined from different types of laboratory

experiments. In particular, monotonic triaxial compression and extension tests,

long-term creep tests as well as cyclic loading tests are required for determining the

material parameters of the model. The procedure to determine the required pa-

rameters was explained in this chapter. The obtained results show that the model

can adequately describe many material responses observed in the experimental in-

vestigations. For example, the model can describe the volume dilatation, failure

and post-failure in quasi-static strength tests for both compression and extension

paths. The model can be also applied to model the transient, steady-state and

tertiary creep under constant loading condition. The effect of temperature on the

creep behavior can be also described by the model. In addition to this, the model

can represent the material response of rock salt under cyclic loading. The strain

accumulation during cyclic loading and the fatigue failure in dilatancy domain are

the main features of the model in cyclic loading tests.

• A parametric study was carried out in this chapter to assess the performance of the

viscoplastic-creep-damage model in different loading conditions. In addition to this,

some of the key factors were introduced and their effects on the model response were

qualitatively represented.

• As the confining pressure increases, the rock salt ductility increases as well. Under

low confining pressures and high deviatoric stresses, rock salt behaves as a brittle

material.
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• The peak strength in quasi-static tests reduces by reducing the applied strain rate.

In general, as the strain rate decreases the rock salt ductility increases. Therefore,

for very small stain rates, the test becomes like a creep test with constant stress

and no softening takes place.

• The effect of temperature on the model response in triaxial strength tests is similar

to the strain rate. In general, as the temperature increases, the rock salt behavior

becomes more ductile. That means, at higher temperatures, the inter-granular

mechanisms that control the creep deformation take the dominating role. Under

such condition, the damage evolution resulted from the opening of microcracks

becomes slower. At higher temperatures, the deformation is more carried by the

movement of disloations which is highly temperature dependent.

• As the applied deviatoric stress to the rock salt in creep tests reduces, the time to

reach to the long-term failure increases. Finally, when the stress state lies below the

dilatancy boundary, the rock salt exhibits only a steady-state deformation without

any failure. That means, no tertiary creep occurs below the dilatancy boundary.

• Several factors may affect the rock salt behavior in cyclic loading tests. Maximum

and minimum stresses, frequency of cycles and temperature are the most important

factors.

• It is expected to experience the fatigue failure, when the maximum stress in cyclic

loading lies in the dilatancy zone. As explained before, the constitutive model shows

no cyclic failure if the maximum stress in cyclic loading is below the dilatancy

boundary. Fatigue failure occurs when the strain energy exceeds a critical energy

level equivalent to failure under non-cyclic load.

• The effect of temperature on cyclic behavior is similar to the creep behavior. By

increasing the temperature, the material ductility increases. Therefore, more strain

accumulation is observed within the cyclic loading.

• As the frequency of cycles reduces, more strain accumulates during the cyclic load-

ing. Under such condition, the rock salt sample may experience failure at less

number of cycles.
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modeling techniques

6.1 Staggered thermo-mechanical modeling

During a CAES plant operation, the air injection and withdrawal produce temperature

and pressure fluctuations within the storage cavern. The main objective in this section

is to provide a solution for prediction of these fluctuations. This solution can be used in

the numerical calculations as a tool to generate reasonable thermo-mechanical boundary

conditions for the finite element model of salt cavern. Fig. 6.1 represents a staggered

procedure to model the thermo-mechanical behavior of compressed air storage cavern.

Based on this procedure, first, the air temperature and the air pressure inside the cavern

are calculated by an analytical solution. The mathematical equations related to the

applied analytical solution is explained in this section. Then, the calculated values are

used as boundary conditions for the finite element model. The numerical example given

in Section. 7.3 employs the staggered procedure to model the thermo-mechanical response

of rock salt caverns.

6.1.1 Thermodynamics of the gas inside the cavern

The mass and energy transfer in a compressed air storage cavern are essentially complex

processes. However, by applying simplification rules and with the aid of thermodynamic

laws, the temperature and pressure variations inside the storage place can be predicted

with an acceptable level of accuracy. In this section, an analytical solution suggested

in Raju & Khaitan (2012); Kushnir et al. (2012); Xia et al. (2015) is used to obtain

the temperature and pressure variations during the charge and discharge periods. To

formulate the mathematical problem governing the temperature and pressure variations,

the following assumptions have been made:

113
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• As shown in Fig. 6.2, the cavern itself is considered as a control volume for the

thermodynamic problem.

• The rock salt compressibility is quite small when it is compared to the gas com-

pressibility, therefore cavern volume is assumed to remain constant in the analytical

model Bérest et al. (2012). In other words, since the volume change of cavern is

much smaller than the total volume, its effect on the air temperature and pres-

sure variations are neglected. Therefore, to formulate the mass and energy balance

equations, a constant volume V is assumed for the cavern. However, to enhance the

quality of estimation in long-term evaluations and to improve the link between the

analytical solution and the numerical model, the value of cavern volume V has to

be updated at regular time intervals (e.g. monthly or yearly). Then, the updated

value of cavern volume obtained from FEM simulation is substituted in the analyt-

ical solution to calculate the air temperature and pressure variations (see Fig. 6.1).

• The air flow during injection and withdrawal processes is turbulent. As a result, the

air temperature and pressure gradients are quite small Bérest et al. (2011, 2013).

For this reason, the air temperature Ta, pressure pa and density ρa are assumed to

be uniform throughout the storage space.

• The air properties of inflow and outflow such as temperatures (Tin and Tout), specific

enthalpies (hin and hout) and mass flow rates (ṁin and ṁout) are controlled by the

CAES operator. Practically, depending on the electricity demand from power grid

and the generated electricity by renewable energy sources as well as some technical

considerations such as the capacity of compressor and gas turbine, the operating

condition of cavern can be scheduled by the plant operators. Therefore, it is assumed

that the air properties at the inlet and outlet of the cavern are known during the

charge and discharge processes.

• The air is considered as an ideal gas. In the operating range of pressures and

temperatures within the cavern, ideal gas assumption for air is nearly valid Raju &

Khaitan (2012).

Taking the above-mentioned assumptions into account and employing the mass and energy

conservation laws, the mathematical formulation of the air injection/withdrawal problem

is obtained according to the following section. This section is mainly taken from Khaledi,

Mahmoudi, Datcheva & Schanz (2016a).
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Figure 6.1: Schematic representation of the applied procedure to model the thermo-
mechanical behavior of compressed air storage cavern

6.1.2 Mass and energy balance equations

Assuming a constant volume V for the cavern, the mass balance equation during the

charge and discharge processes is written as :

V ρ̇a = ṁin − ṁout. (6.1)

Here, ρ̇a is the rate of density change for the air inside the cavern. In addition, ṁin and

ṁout denote the mass flow rate over the charge and discharge time, respectively. These

two quantities are dependent on the technical requirements of the plant (for example,

maximum capacity of the compressor or the allowable inflow rate of the turbine) as well as

the energy demand from the power grid. The cavern operators can adjust the properties of

air inside the cavern within the desired range by controlling these two factors. Therefore,

ṁin and ṁout are considered as known values in the heat and mass transfer simulation.

On the other hand, the energy balance equation for the cavern is written as follows:

V (ρ̇aua + ρau̇a) = ṁinhin − ṁouthout − hcAc(Ta − Ts). (6.2)

Where subscripts in and out denote the properties of air at the inlet and outlet of the

cavern during charge and discharge processes, receptively. ua is the specific internal

energy and h is the specific enthalpy of the air. The last term on the right hand side of

the Eq. 6.2 represents the heat transfer between air and rock salt medium. hc is the heat

transfer coefficient between the cavern wall and the air and Ac is the heat transferring
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area. Moreover, Ta and Ts represent the temperature of air inside the cavern and the

temperature of surrounding rock, respectively. Assuming air as an ideal gas, the following

equations can be used to calculate the pressure pa, specific internal energy u and specific

enthalpy of the air h.

pa = ρaRTa, ua = h− pa
ρa
, ḣ = caṪa. (6.3)

R and ca are the specific gas constant and the specific heat capacity of the air, respec-

tively. Substituting the above-mentioned equations in Eq. 6.2 and using the mass balance

equation shown in Eq. 6.1, the following ordinary differential equation is obtained to de-

scribe the air temperature variation. Having air properties at the inlet and outlet of the

cavern, the equation below is solved for any time t. In this thesis, an implicit scheme is

used to solve the following equation.

ρa(ca −R)Ṫa +
ṁinca
V

(Ta − Tin)

+
RTa
V

(ṁout − ṁin) +
hcAc
V

(Ta − Ts) = 0.

(6.4)

The heat transfer coefficient hc and the heat transferring area Ac are the factors which

can not be determined easily Raju & Khaitan (2012); Kushnir et al. (2012). As suggested

in Raju & Khaitan (2012), the term
hcAc
V

can be replaced by an effective heat transfer

coefficient heff which is a function of air mass flow rate at the cavern inlet and outlet.

The equation below is used to correlate the charge and discharge mass flow rates with the

effective heat transfer coefficient.

heff = a1 + a2 |ṁin − ṁout|a3 . (6.5)

The parameters a1, a2 and a3 are obtained by calibration with the in-situ measured test

data.

6.1.3 Validation via two case studies

As represented in Fig. 6.1, the analytical thermodynamic model in this thesis is used

as a tool to generate admissible thermo-mechanical boundary conditions for the finite

element model of salt cavern. Here, the validity of the analytical model is examined by

recalculating two examples given in Raju & Khaitan (2012) and Kushnir et al. (2012).

In these examples, the measured in-situ data of Huntorf plant within 24 hours have been
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Figure 6.2: The control volume and the air properties at inlet and outlet during the charge
and discharge processes

Table 6.1: Required data for the analytical simulation (Raju & Khaitan, 2012)

Temperature of rock salt medium Ts 323 K
Air temperature at the inlet Tin 323 K
Specific gas constant R 287 J/(kgK)
Specific heat, ca 1006 J/(kgK)
Constant a1 in Eq. 6.5 0.2356 W/(m3K)
Constant a2 in Eq. 6.5 0.0149 J/(s(1−a3 )kga3 m3K)
Constant a3 in Eq. 6.5 0.8
Total storage volume V (for Huntorf) 300000 m3

back calculated using the aforementioned equations. The Huntorf plant has been located

in the north of Germany and recognized as the world’s first CAES plant (Cortogino et al.,

2001). Figs. 6.3a and 6.3b compare the calculated air temperature and pressure with the

in-situ data given in Raju & Khaitan (2012). Table 6.1 provides the model parameters

used in these simulations. Similarly, Figs. 6.3c and 6.3d show the air temperature and

pressure obtained from analytical model in comparison to the in-situ data given in Kushnir

et al. (2012). The air mass flow rate over the experiment time which is the input for the

heat and mass transfer simulation is also shown in the figures. In general, during the

charge period (i.e. positive mass flow rates), the air pressure inside the cavern rises up

and the same time, the air temperature increases. While, over the discharge time (i.e.

negative mass flow rates), the trend of pressure and temperature changes are reversed.

However, as represented in Eq. 6.4, the rate and the magnitude of temperature and

pressure changes are dependent on several factors such as the volume of the cavern, the

inflow/outflow properties and the heat transfer between air and the rock mass. Applying

the aforementioned assumptions, the model can adequately estimate the variation of air

temperature and pressure inside the storage space. Therefore, in Section. 7.3, this model
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(a) (b)

(c) (d)

Figure 6.3: Comparison between in-situ measured data and the analytical simulation (a)
temperature data from Raju & Khaitan (2012) (b) pressure data from Raju & Khaitan
(2012) (c) temperature data from Kushnir et al. (2012) (d) pressure data from Kushnir
et al. (2012)

is employed as a tool to generate the thermo-mechanical loads which should be applied

as the boundary condition for the finite element model of salt cavern.

6.2 Model approximation using metamodeling technique

In design optimization, parameter identification or global sensitivity analysis, it is required

to carry out repeated computations, where only a few number of model parameters are

changed among those defining the problem of interest. These computations are normally

performed by finite element method, which require in most cases considerable amount

of time. This makes the repeated calculations computationally very expensive. In such

cases, approximation models known as metamodels (or surrogate models) are used to

reproduce the system behavior in a tremendously less time than that used by the numerical

simulation methods. Fig. 6.4 is a schematic representation of the metamodeling process.
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Figure 6.4: Schematic representation of the metamodeling process

From mathematical point of view, the main goal of metamodeling is to approximate

the governing function which describes the behavior of an engineering problem Khaledi,

Schanz & Miro (2014). The only available information is the input and output data in

the form of some scattered samples like (X,U) obtained from physical or computational

experiments. In order to construct a metamodel, two main components are required: (1)

the input parameter matrix (X) which includes the s parameters of np sample points (2)

the matrix of system responses or snapshot matrix (U) in which the np function values ofm

observation points are recorded. Therefore, X and U matrices are of size s×np and m×np
respectively. Depending on the structure of X and U, several approximation techniques

may be applicable. In this thesis, Proper Orthogonal Decomposition (POD) combined

with Radial Basis Functions (RBF) proposed by Buljak (2010) is used to construct a

reliable metamodel. Fig. 6.5 shows the flowchart of POD-RBF metamodel. The algorithm

consists of two main parts: (1) proper orthogonal decomposition of the snapshot matrix;

and (2) interpolation using radial basis functions. The basic idea of POD method is to
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Figure 6.5: Flowchart of POD-RBF metamodeling process

present the snapshot matrix U as:

[U]
m×np

= [Φ]
m×np

[A]
np×np

, (6.6)

here, A is the amplitude matrix and Φ includes the proper orthogonal basis vectors.

The POD basis vectors Φ can be obtained by finding the normalized eigenvectors and

eigenvalues of the symmetrical matrix D = UTU (see Buljak (2010); Bolzon & Buljak

(2011)). Since the matrix Φ fulfills the orthogonality condition i.e. ΦT = Φ−1, the

amplitude matrix is calculated as follows:

[A]
np×np

=
[
ΦT
]
np×m

[U]
m×np

. (6.7)
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The size of matrix Φ can be reduced if the basis vectors corresponding to small eigenvalues

are omitted. To accomplish this, first the basis vectors are sorted in a descending order

according to the magnitude of their eigenvalues. Then, the first k columns of matrix Φ

are taken and the rest are removed (k ≤ np). In this way, the reduced basis vectors Φ
T

can be obtained. Subsequently, the reduced amplitude matrix A is calculated as follows:

[
A
]
k×np

=
[
Φ
T
]
k×m

[U]
m×np

. (6.8)

The second step is to use a linear combination of radially symmetric functions in order

to approximate the reduced amplitude matrix A. Having np sample points in the s

dimensional space, each component of reduced amplitude matrix A is computed by radial

functions as follows:

ajl =

np∑
i=1

bilgi(x
j) j = 1, · · · , np l = 1, · · · , k, (6.9)

where bil are unknown coefficients and gi(x
j) gives the value of the radial function g with

the center point xi at the sample point xj. In this study, inverse multiquadratic function

is applied which has the form:

gi(x) =
(∥∥x− xi

∥∥2
+ c2

)−0.5

, (6.10)

where parameter c is a predefined constant which controls the smoothness of the radial

basis function Khaledi, Miro, König & Schanz (2014). It is computationally of advantage

to select this value within the [0− 1] range. Equation 6.9 provides k×np linear equations

with k×np unknowns. This system of equations is solved to find the unknown coefficients.

[
A
]
k×np

= [B]
k×np

[G]
np×np

=⇒ [B]
k×np

=
[
A
]
k×np

[G]−1

np×np
, (6.11)

here, matrix G gathers the values of radial functions at the sample points and matrix B

includes the unknown coefficients. Finally, the equation below is used to find the function

value at the observation point m for an arbitrary input point x:

[ũ (x)]
m×1

=
[
Φ
]
m×k

[B]
k×np


g1 (x)

...

gnp
(x)


np×1

(6.12)
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6.3 Parameter identification technique

In general, the material parameters of the rock salt around the cavern are determined

through the inverse analysis of experimental measurements. To accomplish this, the val-

ues of the constitutive parameters should be adjusted in the finite element model until the

difference between the calculated results and the recorded measurements is minimized.

The main goal of inverse analysis is to identify an optimum set of parameters for which

the predicted responses at observation points are closest to the measurements. Mathe-

matically, the identified parameters should minimize the following objective function:

f(x) =
‖uc(x)− um‖
‖um‖ , (6.13)

where um is the vector of measurements and uc is the vector of corresponding computed

value obtained from the numerical simulation. The minimum of the objective function 6.13

can be found effectively through evolutionary algorithms like Genetic Algorithms(GA) or

Particle Swarm Optimization(PSO) (see Khaledi, Miro, König & Schanz (2014); Meier

et al. (2009, 2013); Knabe et al. (2012); Levasseur et al. (2008)). In this study, the

genetic algorithm is chosen for solving the optimization problem. Genetic algorithms are

inspired by Darwin’s evolution theory. The algorithm is started with the initial set of

parameter vectors called initial population which is randomly generated. Some of the

population members (individuals) are selected and used to form a new population by

applying crossover and mutation functions. The whole process is done with the scope

that the new population will be better than the old one. Selection of parameter vectors is

done according to their objective function (called fitness function). The more suitable the

individuals are, the more chances they have to be selected and reproduced. This procedure

is repeated until some criteria (for example number of generations or improvement of the

best solution) are satisfied.

If the objective function is highly non-linear with a large number of input variables, a

large number of evaluations of the objective function may be needed before the best set

of parameters is identified. This high computation cost makes the algorithm of inverse

analysis inefficient. Therefore, a practical solution is to replace the original finite element

model by a metamodel explained in previous section. Therefore, computing the value of

uc directly from the metamodel reduces the computation time for solving the optimization

problem. The flow chart shown in Fig. 6.6 describes the parameter identification procedure

using the genetic algorithm combined with the metamodel Khaledi, Miro, König & Schanz
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(2014). The numerical example given in Section. 7.1 illustrates both metamodeling and

parameter identification techniques.

6.4 Global sensitivity analysis

The basic definition of sensitivity analysis is the study of how uncertainty in the output of

a model can be apportioned to different sources of uncertainty in the model input Saltelli

et al. (2008). Global sensitivity analysis explores the whole input parameter space, and

therefore the information is independent of the model nature and is more reliable and

comprehensive as a result Mahmoudi et al. (2016). In the following subsections, the

applied global sensitivity methods in this study are presented.

6.4.1 Variance based method

The main idea of variance based method (VB) is to evaluate how the variance of inputs

contributes into the variance of the model output. The Si is the first order sensitivity

measure which evaluates the sensitivity of model to input parameter xi without consider-

ing the interaction between input parameters. The total effect sensitivity index ST i is a

more comprehensive index which takes the interaction between parameters into account

Saltelli et al. (2008).

The calculation procedure of the first order and total effect sensitivity indices has been

presented by Saltelli et al. (2008). Firstly, two (np, s) matrices A and B which include

random sets of parameters are generated. np is the number of samples and s is the number

of input parameters. In this thesis, Latin Hypercube sampling method is used to generate

uniformly distributed sample points. The sample points generated by this method ap-

pear to be random overall, but they are uniformly distributed if each dimension is viewed

separately. Concerning the distribution type, three types of parameter distribution are

possible, i.e. uniform, normal and log-normal. In general, there are differences between

the uniform and the other two distributions. However, the difference between normal and

log-normal is apparent only in case of input parameters with large coefficients of varia-

tions. For input parameters with coefficients of variation COV < 20%, there is almost

no difference. However, in this study the uniform distribution has been used and with

the aid of metamodel, we are able to generate high number of samples inside the input

parameter space. Therefore, almost the whole input parameter space is covered. Sub-

sequently, another matrix Ci is produced with same arrays as B, but its ith column is
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Figure 6.6: Flow chart of inverse analysis algorithm using metamodel

replaced by the ith column of matrix A. In the next step, the model outputs for all input

values in the sample matrices A, B and Ci are to be calculated. Finally, with equations

(6.14) and (6.15) VB indices for each parameter are obtained.

Si =
(uTAuCi

)− np(uA)2

uTAuA − np(uA)2
, (6.14)

ST i =
(uB − uCi

)T (uB − uCi
)

2uTBuB − 2np(uA)2
, (6.15)

here uA, uB and uCi
are vectors containing model evaluations for matrices A, B and Ci

respectively. uA and uB are the mean value estimates for the components of uA and uB.

6.4.2 Elementary effect method

The elementary effect method (EE) is an effective method to observe some important

inputs among all input parameters of a model. For a model with x = (x1, x2, x3, ..., xs)

normalized input parameters, the input space constructs a s-dimensional unit cube. This
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unit cube, is discretized into a p-level grid, where p is an integer number. The elementary

effect of the ith input parameter in a certain point x is calculated using equation 6.16.

EEi =
u(x + ∆ei)− u(x)

∆
, (6.16)

where, ∆ is a value in {1/(p− 1), ..., 1− 1/(p− 1)} and ei is a vector of 0 components

but with 1 as ith direction where i = (1, 2, ..., s) and each ei produces a different value

for EEi. In order to determine the overall influence of the ith input parameter to the

model output, the elementary effect of each parameter needs to be obtained for a number

of sample points which are well distributed inside the input parameter space. In this

thesis, Latin Hypercubic sampling method is used to generated np sample points within

the s-dimensional input parameter space Miro et al. (2014). For each input parameter,

np elementary effects are calculated using equation 6.16. Therefore, in total, np(s + 1)

model evaluations are needed to be performed. The mean value of EEi, µ
∗
i estimates the

overall influence of the ith input parameter to the model output.

µ∗
i =

1

np

np∑
j=1

|EEj
i |. (6.17)

6.5 Summary

The following items summarize the main issues given in this chapter:

• The current chapter presents a staggered procedure to model the thermo-mechanical

behavior of compressed air storage cavern. Based on this procedure, first, the air

temperature and the air pressure inside the cavern are calculated by an analytical

solution. The mathematical equations related to the applied analytical solution has

been explained in this chapter. Then, the calculated values are used as boundary

conditions for the finite element model. During a CAES plant operation, the air

injection and withdrawal produce temperature and pressure fluctuations within the

storage cavern. Therefore, it is needed to predict these fluctuations. The analytical

solution employed in this study can be used in the numerical calculations as a tool to

generate reasonable thermo-mechanical boundary conditions for the finite element

model of salt cavern.
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• In general, during the charging period of caverns (i.e. positive mass flow rates), the

pressure inside the cavern rises up and the same time, the air temperature increases.

While, over the discharge time (i.e. negative mass flow rates), the trend of pressure

and temperature changes are reversed. However, the rate and the magnitude of

temperature and pressure changes are dependent on several factors such as the

volume of the cavern, the inflow/outflow properties and the heat transfer between

air and the rock mass. For example, rapid discharge rates may result in very low

temperature condition in caverns.

• Metamodeling technique has been used in this thesis as a tool to reduce the computa-

tion time in global sensitivity analysis and parameter identification. To accomplish

this, approximation models obtained by POD-RBF technique are used to reproduce

the system behavior in a tremendously less time than that used by the numerical

forward models.

• In general, the material parameters of the rock salt around the cavern are determined

through the inverse analysis of experimental measurements. To accomplish this, the

values of the constitutive parameters should be adjusted in the finite element model

until the difference between the calculated results and the recorded measurements

is minimized. In this chapter, a parameter identification algorithm using the genetic

algorithm combined with the metamodeling technique was presented.

• Global sensitivity analysis can be applied as a tool to explore the whole input

parameter space and to identify the key parameters. It is also useful to assess the

quality of numerical models.



7 Numerical simulation of gas storage

caverns in rock salt formations

7.1 Example I: constant mechanical loading

This example has been presented in Khaledi, Mahmoudi, Datcheva, König & Schanz

(2016). A typical salt cavern with a simplified geometry has been modeled using GID

software Code-Bright (2010). GID is used as the pre-processor and post-processor of the

Code–Bright finite element solver. Since the cavern has a cylindrical shape, only half of

the geometry has been simulated. The axisymmetrical model with a height of 800 m and

a width of 300 m is shown in Fig. 7.1. The cavern itself has a radius of 37.5 m and a

height of 233 m and its top and bottom have the spherical form. The boundary and initial

conditions are defined as follows:

Boundary condition:



σyy = σv at y = H, 0 < x < L

σxx = σv + ρg(H − y)/106 at 0 < y < H, x = L

ux = 0 at 0 < y < H, x = 0

uy = 0 at y = 0, 0 < x < L,

(7.1)

Initial condition:

σxx = σyy = σzz = σv + ρg(H − y)/106 at 0 < y < H, 0 < x < L

ux = uy = uz = 0 at 0 < y < H, 0 < x < L,
(7.2)

with L = 300 m; H = 800 m; σv = 10 MPa; g = 10 m/s2; ρ = 2000 kg/m3. It is assumed

that the salt cavern is filled with pressurized gas with no leakage or discharge. Therefore,

127
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the internal pressure of the cavern remains at a constant level of 7 MPa. The material

parameters of rock salt and the bounds of unknown parameters are shown in Table 7.1.

7.1.1 Metamodel construction for the cavern

The output data at the observation points (snapshots) can be any physical quantity

such as pressure, strain, temperature, displacement etc. In this numerical example, the

horizontal displacement at the cavern’s wall is the quantity that is read and recorded as

the output (see point A in Fig. 7.1). This quantity is an important factor for designing

caverns and it can be considered as a stability criterion. The following steps have been

conducted to establish the POD-RBF metamodel for this example:

1. ηk, ηm and Gk are the essential material parameters of LUBBY2 model which have

been selected as the input parameters of metamodel to describe the visco-elastic

behavior of the rock salt. In the first step of metamodel construction, np different

parameter sets have to be created inside the input parameter space. The lower and

upper bounds of each parameter have been shown in Table 7.1. In this example,

np = 90 has been selected to construct the metamodel. Thus, the size of input

parameter matrix (X) for this example is 3 × 90. The sample generation has been

performed using Latin Hypercube method.

2. The finite element model is run for each parameter set within a predefined time

scale. In each solver run, m output values (i.e. horizontal displacement of point

A) corresponding to the predefined observation times are stored in the snapshot

matrix (U). Then The POD-RBF metamodeling technique is used to reduce the

computation time for two applications; i.e. (1) sensitivity analysis and (2) parameter

identification. Regarding sensitivity analysis, both short and long term behaviors of

the cavern are important. The constructed metamodel for this case has 12 output

values (m = 12) including 3 hourly observations (i.e. 4, 9 and 12 hours) and 9 daily

observations (1, 3, 10, 15, 20, 30, 40, 50 and 60 days). While, for the parameter

Table 7.1: Material parameters for rock salt

Elasticity LUBBY2 Model

E (MPa) ν k1(1/MPa) k2(1/MPa) m(1/MPa) ηk(MPa.d) ηm(MPa.d) Gk(MPa)

25000 0.3 -0.191 -0.168 -0.247 [4.6e4 - 1.1e5] [5.8e6 - 2.9e7] [3e5 - 6e5]
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(a) (b)

Figure 7.1: Salt cavern model a) Geometry and boundary condition b)Finite element mesh
of the model

identification, only the long term behavior of rock salt has been taken into account.

In this case, the snapshot matrix (U) has 100 columns (m = 100) and each column

corresponds to the horizontal displacement of point A at the end of each day.

3. The input parameter matrix (X) is normalized between 0 and 1 in order to avoid

the potential scaling errors due to the disparate magnitudes of input parameters.

4. Having the input parameter and snapshot matrices the POD-RBF metamodel is

constructed according to section 6.2.

Before proceeding to the next step, the accuracy of the constructed metamodel is to be

evaluated. Therefore, 20 test points have been generated randomly inside the design

domain. Then, the exact output value u (obtained from Code–Bright model) and the

approximate value ũ (generated by metamodel) are computed for the test points and

compared by the following standard accuracy measure NRMSE.
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NRMSE =

{(
20∑
i=1

m∑
j=1

(uij − ũij)2

)
/

(
20∑
i=1

m∑
j=1

(uij)
2

)}(1/2)

. (7.3)

The obtained NRMSE for this case is equal to 0.0043 which demonstrates the accuracy of

the constructed metamodel inside the selected design domain. The required time for one

single evaluation of the FE cavern example by Code–Bright is 40 minutes. Thus, it takes

about 60 hours to create 90 sample points and their corresponding snapshots. However,

once the metamodel is created, the computation time decreases drastically. The time

needed to obtain results from the metamodel is about one second which is much less than

the computation time of the original model.

7.1.2 Sensitivity analysis of the numerical salt cavern

The main goal of this section is to investigate the effect of three selected material param-

eters on the horizontal displacement of cavern’s wall during its operation. To achieve this

goal, the constructed metamodel in section 7.1.1 is used and the sensitivity of numerical

outputs to the input data are analyzed by EE and VB methods. Two variance based

indices i.e. Si, ST i and one elementary effect index µ∗ calculated versus time of loading

have been shown in Figs. 7.2, 7.3 and 7.4 respectively. As it can be seen, the sensitivity

measures of mechanical behavior of salt cavern to various material parameters changes

versus time. According to the results, the sensitivity indeces for the dashpot coefficients

show monotonic behavior over time of the system operation. The Kelvin dashpot coeffi-

cient is most influential at the early time of the cavern creep. Its importance decreases

monotonically and vanishes within the first day of the observation time period. Contrary,

the the effect of the ηm increases monotonically and it becomes dominant very fast just

only after 30% of the whole observation time period. The sensitivity of the model to

the Kelvin spring coefficient Gk shows non monotonic pattern over time. Gk becomes

dominant at the end of the first day of the cavern operation and its influence monotoni-

cally decreases after that. This implies that the transient creep is govern firstly but for a

short time by the Kelvin dashpot, whereas the Kelvin spring term keeps important over

longer time. Therefore, this parameter plays a significant role in long–term analysis of

the cavern. In other words, more accurate value than other parameters is needed for this

parameter.
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Figure 7.3: Total effect index ST i versus time
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Figure 7.4: µ∗ index versus time, µ∗ versus time (p=10)

7.1.3 Parameter identification for the salt cavern model

The main objective of this part is to obtain material parameters of LUBBY2 model by

inverse analysis of synthetic data for the simulated salt cavern. The word “synthetic” is

used here because the observation data are obtained from numerical simulations and not

from field measurements. For this purpose, the horizontal displacement at the observation

point A is calculated within 100 days by the FE solver using a set of predefined parameter

values of LUBBY2 model. It is assumed that these calculated outputs correspond to the

in-situ measurement data which can be used in the parameter identification algorithm

shown in Fig. 6.6. However, the real measurement data which are obtained from the

Table 7.2: Pre-defined parameter set and the identified values by inverse analysis

Pre-defined parameters Identified parameters

ηk [MPa.d] ηm [MPa.d] Gk [MPa] ηk [MPa.d] ηm [MPa.d] Gk [MPa]

8.9e4 7.89e6 5.97e5 7.3e4 8.3e6 5.3e5
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field are always accompanied by some errors and uncertainties. Therefore, in order to

consider the effects of the probable errors, the synthetic measurements are randomly var-

ied within a certain range. The measurement errors are assumed to be ±2 mm in this

example. Fig. 7.5 represents the generated synthetic data for the predefined parameter

set shown in Table 7.2. After obtaining the synthetic measurements, the original model is

replaced by the POD-RBF metamodel constructed in the previous section and parameter

back calculation is performed according to the flowchart shown in Fig. 6.6. The global

optimization toolbox available in MATLAB version 2012b, is used to perform the opti-

mization process. For the 2D cavern model studied here, an average of 40 min is required

on a standard PC for a single evaluation of the objective function. As shown in Table

7.3, the optimal values of LUBBY2 parameters have been found after 3000 evaluations

of the objective function. These results could have been obtained after 84 days if the

original FE model was employed, while with the aid of the metamodeling, the total time

needed for parameter identification reduced to 60 hours. The identified parameter values

are shown in Table 7.2. The main information from the performed sensitivity analysis

that has to be accounted in the model parameter identification procedure is that ηk may

not be reliably identified if the observation data do not include short time measurements

(e.g. within the first day of the cavern operation). Sparse data before the first 10 days

may yield poor prediction to Gk. Moreover, ηm is expected to be most reliably identified

as its importance to the model response rapidly increases after the first few days of the

considered time period. However, it is important to realize that including ηk as a param-

eter to be back-analyzed may also lead to non-unique solution of the posed optimization

problem. The results presented in Table 2 confirm these conclusions as the difference

between ηk to get the exact model data and ηk obtained via back analysis to noisy data

is the highest (approx. 17%), whereas for Gk it is about 11% and for ηm only 5%. To

visualize the accuracy of the identified parameters, they have been inserted into the FE

model and the responses at the observation points have been compared with the original

responses. Fig. 7.5 demonstrates the accuracy of the identified parameter values.
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Figure 7.5: Obtained results by the constructed metamodel using the identified parameters
in comparison with the synthetic measurements

Table 7.3: GA parameters and computation time for the test case

Cross over function Two points
Population type Double vector
Total evaluations 3000
Best fitness value 0.0263
Computation time FEM solver: 84 days, Metamodel: 60 hours

Obtained sensitivity indices clearly demonstrate the importance level of each parameter

in short/long term analysis. Inverse analysis of measurements has been carried out for

a typical rock salt cavern to identify the material parameters of a visco-elastic model.

To accomplish this, the error between the synthetic measurements and the calculated

data has been minimized by a genetic algorithm combined with the metamodeling tech-

nique. The obtained results show that with the aid of accurate and efficient metamodeling

method such as the combination POD-RBF, it is possible to obtain the solution of the

optimization problem with a very small error in a significantly shorter time. In this way,

solving computationally expensive problems such as parameter identification and sensi-

tivity analysis becomes possible to tackle if the original model is replaced by a reliable

and robust metamodel.
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7.2 Example II: cyclic mechanical loading

This numerical example has been taken from Khaledi, Mahmoudi, Datcheva & Schanz

(2016b). A typical salt cavern with a simplified geometry has been modeled using GID

software. The axisymmetrical model with a height of 800 m and a width of 500 m is

shown in Fig. 7.6a. The cavern itself has a diameter of 37.5 m and a height of 233 m

and its top and bottom have the spherical form. On the upper model boundary a load

of 10 MPa is applied which represents the overburden load at the top of the model.

The vertical displacement at the model bottom is restrained. The density of compact

rock salt is assumed to be ρsalt = 2000 kg/m3 and the numerical simulation is done at

constant temperature T = 318 K. The initial stress at field is assumed to be isotropic

(i.e. σxx = σyy = σzz). The boundary condition and finite element discretization of the

model have been shown in Fig. 7.6a. The material parameters for Sonderhausen rock salt

which have been shown in Table 7.4 are used in this section to describe the mechanical

behavior of salt.

The following steps are performed to simulate the construction process and cyclic loading

operation:

Initial phase: it is assumed, at time t = 0, no excavation has been performed. For

this reason, a uniformly increasing load equal to the geostatic pressure is applied to the

boundary of cavern. Since the initial stress state is isotropic, the principal stresses around

the cavern before excavation are identical (see Fig. 7.7a).

Leaching phase: in order to model the leaching process, the applied load inside the cavern

which is equal to the geostatic pressure is gradually reduced to the brine pressure (with

ρbrine = 1100 kg/m3). This process has been performed in 9 excavation steps from bottom

to the top of the cavern. The duration of each step is assumed to be 160 days. That

means the whole cavern is excavated after 4 years (see Fig. 7.7b).

Debrining phase: in this example, the debrining phase has been modeled in 9 steps from

top to the bottom of the cavern. In each step, the brine pressure is replaced by the gas

pressure which is equal to the weight of brine column from ground surface to the current

brine level (see Fig. 7.7c). Thus, when the pressure of injected gas is equal to the brine

pressure at the bottom of cavern, the whole brine is ejected. In this numerical example,

each debrining step takes 20 days and the whole process is carried out within 6 months.

First filling phase: in this phase, the pressure inside the cavern reduces to the minimum

pressure of the cavern. It is assumed that the pressure reduction is carried out within 5

days.
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Figure 7.6: (a) Geometry, boundary conditions, finite element discretization of the salt
cavern model as well as the location of observation points O1 and O2 (b) changing of
internal pressure of the cavern during leaching phase, debrining process, first filling and
cyclic operation
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Figure 7.7: Schematic representation of salt cavern excavation process (a) initial phase, no
cavern exists, geostatic condition (b) leaching phase, rock salt is excavated using solution
mining technique (c) debrinning phase, brine is extracted by injecting the storage product
i.e. compressed air or hydrogen (d) first filling and cyclic loading operation, the internal
pressure of the cavern fluctuates within a predefined range
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Cyclic loading phase: to model the cyclic operating condition, the internal pressure of the

cavern fluctuates within a predefined range (see Fig. 7.7d). Furthermore, it is assumed

that the pressure variations during the charge and discharge of the cavern are linear.

In this numerical example, two loading scenarios have been defined for the cyclic loading

operation. In the first loading scenario, the internal pressure fluctuates between 7 to 12

MPa, while, in the second scenario the pressure varies between 3 and 8 MPa. The duration

of each cycle is assumed to be 1 day and 100 loading cycles are simulated. Fig. 7.6a shows

two observation points located at the bottom of the cavern (O1) and the cavern wall (O2).

These points are used in the next section in order to evaluate the mechanical behavior

of rock salt at the boundary of the cavern. Fig. 7.6b describes schematically the loading

pattern which has been defined to simulate the cavern excavation process as well as its

cyclic loading operation.

7.2.1 Results and discussion

The main objective in this section is to investigate how the mechanical behavior of salt

cavern changes with respect to the internal gas pressure. In the following, the stress

paths at the observation points O1 and O2 are investigated over the performance life

of the cavern. In addition, the stability and serviceability of the simulated cavern with

respect to the internal pressure will be discussed.

7.2.2 Stress paths around the cavern

As discussed in Section. 6.1.1, the dilatancy and failure boundaries are functions of the

Lode’s angle θ. In order to compare the stress paths of different points around the cavern

independent of Lode’s angle, all stress points are mapped to the θ = 60◦ plane. To

accomplish this, the second invariant of deviatoric stress (J2) is scaled using the equation

below:

scaled J2 = J2
F dil(I1, 60◦)

F dil(I1, θ)
. (7.4)

Where F dil(I1, 60◦) and F dil(I1, θ) indicate the distance of dilatancy boundary from hydro-

static axis in π-plane for θ = 60◦ and the current Lode’s angle θ, respectively. Figs. 7.8a–

7.8d show the stress path of observation points O1 and O2 in the (I1− scaled
√
J2) plane.

Also depicted in these figures are the dilatancy and failure boundaries as well as the initial
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Figure 7.8: Stress path in I1 − scaled
√
J2 plane (a) at the cavern wall (O2) for pming = 7,

pmaxg = 12 (b) at the bottom of the cavern (O1) for pming = 7, pmaxg = 12 (c) at the cavern
wall (O2) for pming = 3, pmaxg = 8 (d) at the bottom of the cavern (O1) for pming = 3,
pmaxg = 8

1→ isotropic stress state and beginning of leaching
1→2 leaching process reaches to the observation point
2→3 leaching process continues until the end of solution mining
3→4 debrining phase
4→5 first filling phase
5→ beginning of cyclic loading
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viscoplastic yield surface obtained from initial stress conditions. In addition, the stress

states at the beginning of each phase have been marked in these figures with numbers 1

to 5. As explained before, during the leaching process, the geostatic pressure applied to

the boundary of cavern is replaced by the brine pressure. Due to this pressure reduction,

the value of I1 reduces, while J2 increases. Subsequently, the stress at the point which is

leached out moves from state (1) located on the hydrostatic axis to the state (2) located

inside the initial viscoplastic yield surface. Then, the solution mining process continues

until the whole cavern is excavated. The state (3) shows the stress condition at the end

of solution-mining process. As it is observed, due to the stress relaxation occurring in the

course of cavern excavation, the stress state (3) is lower than the stress state (2). Since the

stress paths throughout the leaching phase are inside the initial viscoplastic yield surface,

the viscoplastic component of the total strain becomes zero and only an elastic defor-

mation combined with a steady-state creep deformation take place. In the next step, by

replacing the brine pressure with the gas pressure during the debrining phase, the stress

state slightly changes from (3) to (4). From stress state (4) to (5), the internal pressure

of cavern reduces rapidly to the minimum defined pressure. This process is performed

within a few days, therefore the creep strain is negligible and depending on the pressure

reduction level the following cases may encountered:

When the internal pressure reduces to 7 MPa, the stress states at the observation points

remain inside the initial viscoplastic yield surface (see Figs 7.8a and 7.8b). Therefore,

only elastic deformation takes place during the first filling phase. On the other hand, the

stress states of both observation points are still below the dilatancy line. Therefore, no

damage progress is experienced. During the cyclic loading phase, a steady-state creep

deformation without any volumetric strain is added to the elastic part of strain.

In the second scenario with minimum internal pressure of 3 MPa, the observation points

exhibit different stress conditions. For the cavern wall, the stress point goes beyond the

initial viscoplastic yield surface and an elasto-viscoplastic deformation happens. However,

because the cyclic loading is still performed inside the compressibility domain, damage

parameter does not grow up. Regarding the observation point O1 located at the bottom

of the cavern, the stress state is beyond both the dilatancy boundary and the initial

viscoplastic yield surface. In this case, an elaso-viscoplastic-creep deformation combined

with damage is observed.



7.2 Example II: cyclic mechanical loading 141

FOS
0.83
0.93
1.07
1.25
1.49
1.88
2.50
3.70
>7.0

(a)

FOS
0.83
0.93
1.07
1.25
1.49
1.88
2.50
3.70
>7.0

(b)

Figure 7.9: Contour plot of factor of safety (FOS) at the end of first filling phase for (a)
pming = 7, pmaxg = 12 (b) pming = 3, pmaxg = 8

7.2.3 Factor of safety of the cavern

As explained in the previous section, the mechanical behavior of rock salt shows signif-

icant changes when dilatancy occurs. Therefore, all design factors of cavern including

geometry and boundary conditions should be defined in a way that stresses remain below

the dilatancy boundary. For this reason, the quantity below is defined which determines

the factor of safety of the cavern.

FOS =

√
F dil(I1, θ)√

J2

. (7.5)

When FOS > 1, the stresses are inside the compressibility domain and cavern works

under safe operating conditions. Opening of micro-cracks does not occur in this domain

and subsequently, damage does not progress. In contrary, when FOS ≤ 1, the operating

condition of the cavern is not safe and cavern may experience long-time failure due to the

damage progress. The FOS criterion is identical to the Utilization Criterion (UC) which
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was introduced in Section. 2.4.3.1. In the numerical example presented in this section, the

maximum pressure reduction is experienced at the end of first filling phase. Therefore,

the FOS value at this time step is used to quantify the allowable minimum pressure of

the cavern. Fig. 7.9 compares the FOS values around the cavern for the defined loading

scenarios. The contour plot of FOS clearly shows that all the points around the cavern

remain in the safe range for the first loading scenario (pming = 7 MPa). While, in the

second loading scenario, the internal pressure reduces to 3 MPa and all the points lo-

cated at the boundary of the cavern experience the FOS value of one or less than one.

In this case, the smallest value of FOS is observed at the bottom of the cavern where

the highest deviatoric stress J2 and the lowest dilatancy boundary F dil(I1, θ) exist. As

a result, by decreasing the internal pressure of the cavern, the FOS value reduces. The

minimum allowable pressure identified for this numerical example is slightly more that

5 MPa. Applying pressures higher than this value, keeps the stress state of all the points

around the cavern below the dilatancy boundary and ensures the safe operating condition

for the cavern.

7.2.4 Long-term failure due to the damage progress

In this section, the long-term failure ratio (LFR) introduced by Cristescu in Cristescu &

Gioda (1994) is used to evaluate the micro-cracking and damage propagation around the

cavern. The LFR is defined as the ratio of released volumetric inelastic work per unit

volume (wvol) due to dilatancy of rock salt, to the failure strain energy (wf ), such that:

LFR =
wvol
wf

(7.6)

Both wvol and wf have been already defined in Section. 3.4.3. When the LFR value

becomes greater than zero, damage and micro-cracking start to grow up in the material

body. If during the cyclic loading, the stress state goes beyond the dilatancy boundary,

the energy is released and damage propagation becomes more significant. In case the value

of released volumetric strain work per unit volume (wvol) due to micro-cracking reaches to

the threshold value wf , fatigue failure is encountered. Therefore, the underground cavern

is stable as long as the parameter LFR is smaller than one. As shown in the previous

section, the stress state at the bottom of cavern goes beyond the dilatancy boundary for

the case with minimum internal pressure of 3 MPa. Therefore, for this loading scenario,

only the bottom of the cavern is affected by the damage. Fig. 7.10 shows the LFR
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Figure 7.10: Contour plot of long-term failure ratio (LFR) for (a) pming = 7, pmaxg = 12,
after 100 cycles (b) pming = 3, pmaxg = 8, at the end of first filling phase (c) pming = 3,
pmaxg = 8, after 100 cycles

value at the bottom of the cavern for the defined loading scenarios. As it is seen, in the

first loading scenario, all the points at the bottom of the cavern remain undamaged. In

contrary, in the second loading case, damage appears first in the lowest point of the cavern

then it propagates to other neighbor points during cyclic loading phase. As a result, it is

expected to encounter the fatigue failure at the bottom of the cavern due to the damage

propagation when the number of cycles increases.

7.2.5 Serviceability of the cavern

The objective here is to investigate the serviceability of the simulated cavern with respect

to the applied internal pressure. For this reason, the volume loss of the cavern (VL)

during the cyclic loading phase is calculated using the following equation:

VL =
V0 − Vn
V0

× 100, (7.7)

here, V0 and Vn are the initial defined volume and the volume after n loading cycles,

respectively. Fig. 7.11a compares the VL values obtained for the defined loading scenarios

in this section. It is seen that the rate of volume convergence increases significantly when

the minimum internal pressure reduces. As the volume decreases, the storage capacity

of the cavern reduces, and this may affect the serviceability of the whole storage system.
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Figure 7.11: (a) Volume loss of the cavern (VL) for the two loading scenarios (b) the effect
of internal pressure on the shape of the cavern after 100 cycles (displacements have been
scaled with a factor of 100)
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Figure 7.12: The equivalent deviatoric strain, i.e. εeq
d =

√
2

3
εdev : εdev, at the cavern wall

(O2) versus the internal pressure of the cavern for (a) pming = 7, pmaxg = 12 (b) pming = 3,
pmaxg = 8
1→ isotropic stress state and beginning of leaching
1→2 leaching process reaches to the observation point
2→3 leaching process continues until the end of solution mining
3→4 debrining phase
4→5 first filling phase
5→ beginning of cyclic loading
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The closure of the cavern for the two cases is shown in Fig. 7.11b. The effect of internal

pressure on the cavern’s performance can be also explained by checking the strains at

the boundary of cavern. Fig. 7.12 shows how the mechanical behavior of rock salt during

the cyclic loading phase changes when the internal pressure of the cavern reduces. As it

can be seen from Fig. 7.12a, for the first loading scenario, the equivalent deviatoric strain

at the cavern wall (defined as εeq
d =

√
2

3
εdev : εdev) accumulates slowly in a small range.

while, for the second loading scenario, the strain accumulation is more significant.

7.2.6 Permeability changes around the cavern

The low permeability of rock salt is an important factor to guarantee the safety and

tightness of the caverns. Generally, rock salt in undisturbed state has extremely low

permeability, usually less than 10−20 m2 based on laboratory measurements Peach (1991).

Volume increase of rock salt in dilatancy domain is expected to increase the permeability

because of the new porosity created during the micro-cracking process. Therefore, for

caverns which are working under cyclic loading conditions, implementing safe operating

pressures is one of the requirements to avoid rock salt dilation and subsequently, to satisfy

the stability and tightness of the cavern. Numerous experimental investigations have been

conducted during the past decades in order to describe the permeability changes of rock

salt (e.g. see Schulze et al. (2001); Peach (1991); Pfeifle et al. (1998); Popp et al. (2001);

Alkan (2009)). In this example, the model proposed by Peach in Peach (1991) is used

to characterize the permeability changes around the cavern. According to this model,

the permeability is related to the dilatant volumetric strain through a power function as

follows:

k = aεbvol, (7.8)

where a and b are model parameters. The suggested values for a and b by Peach are

2.13 × 10−8 and 3, respectively. Fig. 7.13 demonstrates the gas permeability changes

around the cavern for the defined loading scenarios. As it is seen, for the first loading

scenario, the rock medium remains almost impermeable. Regarding the second loading

scenario, it can be observed that the highest values of permeability are located at the top

and bottom of the cavern where the stress state is fairly inside the dilatancy domain. It

should be noted that the permeability increase around the cavern roof may endanger the

tightness of the cavern near the casing-shoe and lead to the unfavorable leakage of gas.
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Figure 7.13: Contour plot of permeability around the cavern for (a) pming = 7, pmaxg = 12,
after 100 cycles (b) pming = 3, pmaxg = 8, at the end of first filling phase (c) pming = 3,
pmaxg = 8, after 100 cycles

7.3 Example III: cyclic thermo-mechanical loading

This numerical example has been taken from Khaledi, Mahmoudi, Datcheva & Schanz

(2016a). To investigate the effect of thermo-mechanical cyclic loading on the behavior of

salt cavern, a finite element model has been built using GID software. In this section,

the real data of Huntorf CAES plant is adopted to define the dimensions and working

conditions of the model. In Huntorf plant, the compressed air is stored in two relatively

identical storage caverns (i.e. in terms of dimension, depth and storage capacity). The

total storage capacity of the plant is about 300000 m3. However, to efficiently model

the geometry of the cavern, some simplifications are required. In this study, only one

of the caverns is selected for the simulation. The real geometry of the selected cavern

as well as the simplified model are shown in Fig. 7.14a. As seen, the cavern has been

idealized as a half cylinder with a radius of 18 m and a height of 150 m. The top and

bottom of the cavern have the semi-spherical form. The axisymmetrical model with the

height and width of 500 m is shown in Fig. 7.14a as well. With this assumptions, the

storage volume of the simulated cavern is about 150000 m3. On the upper boundary of

the model, a load of 10 MPa is applied which represents the overburden load at the top
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(a)
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Figure 7.14: (a) Geometry and boundary conditions of the model b) finite element dis-
cretization of the salt cavern model
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Table 7.4: Material parameters of rock salt for numerical example III

Elastic parameters
K [MPa] 18115
G [MPa] 9842

Viscoplastic parameters

µ1 [day−1] 5.06e-7
N1 3
n 3
a1 [MPa2−n] 0.00005
η 0.7
β1 [MPa−1] 4.8e-3
β 0.995
m -0.5
γ 0.11
F0 [MPa2] 1
Rs [MPa] 5.4

Creep parameters

µ0 (day−1) 0.27
Qc [kJ/mol] -54000
N2 4.0

Thermal properties
ks [W/mK] 5.3
αs [1/◦C] 1e-5
cs [J/kgK] 985
ρs [kg/m3] 2000

of the model. The vertical displacement at the model bottom is restrained. The finite

element discretization of the model is shown in Fig. 7.14b. The material parameters for

rock salt have been shown in Table 7.4. The following steps are performed to simulate

the construction process and cyclic loading operation of the salt cavern:

• The initial stress state is considered to be isotropic (i.e. σxx = σyy = σzz). Therefore,

at the beginning of the simulation, a load which is represents the geostatic pressure is

applied to the boundary of the cavern. According to Serbin et al. (2015), the initial

rock mass temperature changes linearly with depth with a temperature gradient

of 0.03 ◦C/m. Since the height of the modeled cavern is 150 m, this temperature

gradient leads to a temperature difference of 4.5 ◦C at the top and bottom of the

cavern. For the sake of simplicity, this temperature difference is neglected and

the temperature at the lowest point of the cavern has been selected as the initial

temperature for the entire rock mass. The lowest point of the Huntorf cavern is

located around 820 m below ground level Cortogino et al. (2001). Taking into

account a ground surface temperature equal to 25 ◦C, the initial temperature of the

rock salt is obtained as 50 ◦C.
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• In order to model the excavation process, the applied mechanical loads to the inner

boundary of cavern are gradually reduced to the minimum air pressure (in this

example: 4.7 MPa). Assuming a leaching rate of 35 m3/h and considering the time

needed for debrining phase Tryller & Musso (2006), the whole construction period

takes approximately 230 days. Additionally, the temperature of the inner boundary

is reduced to 35 ◦C in this phase. This temperature reduction is due to the heat

transfer between brine and the rock medium during the leaching process.

• In the next step, the thermo-mechanical cyclic loads resulted from the charge and

discharge processes are simulated. It is assumed that, during the first 100 cycles, the

cavern works under the normal operating conditions reported in (Cortogino et al.,

2001). The mass flow rate during the charging period is 108 kg/s (air flow rate of

the compressor), while the discharge rate is equal to 417 kg/s (air consumption of

the turbine). According to (Cortogino et al., 2001), the charge and discharge time

of the cavern are 8 and 2 hours, respectively. Therefore, this simulation phase takes

about 41 days (i.e. days: 230–271). Having the mass flow rates and the charge and

discharge durations, the pressure and temperature variations are obtained using the

analytical solution given in Section. 6.1.1. The obtained results from the heat and

mass transfer simulation show that the air pressure fluctuates between 4.7 MPa and

7.2 MPa, while, the temperature ranges between 30-70 ◦C.

• After the first 100 cycle, two extreme loading conditions are defined and applied to

the boundary of the cavern for another 100 cycles. The time duration of this sim-

ulation step is about 41 days (i.e. days: 271–312). The extreme loading scenarios

are as follows:

Scenario 1, low pressure working condition: The range of cyclic pressure drops down

to 2.2-4.7 MPa. With this pressure reduction, the temperature cycles are obtained

in the range 10-80 ◦C. (see Fig. 7.15)

Scenario 2, high temperature working condition: According to the Huntorf plant

data, the temperature of injected air to the cavern (Tin) is equal to approximately

50 ◦C during the normal operating condition. The inflow temperature Tin is con-

trolled by the CAES operators via an after-cooler (as explained in Section. 1.1).

In this scenario, the inflow temperature is set to 150 ◦C to investigate the conse-

quences of having high temperature air inside the cavern. This scenario may occur

if an after-cooler with lower heat transfer capacity is used. By increasing the in-
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flow temperature, the temperature inside the cavern rises up and varies between

55-110 ◦C. While the cyclic pressure slightly increases to 5-8 MPa.(see Fig. 7.15).

It should be noted that the considered time span for this numerical example is relatively a

short period in comparison to the cavern’s operating life (for example, 30 years). However,

the main aim of the numerical example is to demonstrate the unfavorable consequences

of extreme loading conditions such as dilatancy, damage progress, tensile stress or cavern

closure. In other words, even for the considered relatively short operation time, the

obtained results up to 312 days can clearly show the changing trend of stability and

serviceability factors.

7.3.1 Results and discussion

The main objective in this section is to assess the performance of the simulated salt

cavern under the influence of defined extreme loading conditions. In the following, the

temperature distribution around the cavern as well as the changes in mechanical stability

and serviceability of the cavern are discussed.

7.3.2 Temperature around the cavern

Because of the temperature difference between the cavern’s inner boundary and the sur-

roundings, the thermal energy is transferred through the rock salt medium by conduction.

Because of this reason, the temperature distribution changes in the vicinity of the cavern.

During the injection process the temperature of air inside the cavern increases. When

the air temperature is higher than the surrounding rock, heat is transferred from the air

to the rock. Therefore, the temperature of the surrounding rock salt rises up. Over the

discharge time, because of the reverse heat transfer from the rock to the air, the rock salt

temperature reduces. Figs. 7.16a and 7.16b show the variation of rock salt temperature

at four selected distances from the cavern boundary during cyclic loading phases. As

depicted in these figures, during the normal operation, the average temperature of each

cycle remains approximately 50 ◦C (i.e. equal to the inflow temperature and initial ground

temperature). In addition, the temperature fluctuation in the rock only takes place in a

narrow zone less than one meter thick. Inside this zone, the amplitude of temperature

cycles reduces as the distance from the cavern’s boundary increases and finally, it ap-

proaches the ground temperature. In the second loading scenario, in which the average

temperature of cycles is increased considerably, the thermal affected zone becomes larger.
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Figure 7.15: Variation of air temperature and pressure during the normal operating con-
dition (cycles: 1-100) and extreme working conditions (cycles: 100-200)

This can be seen from Fig. 7.17 which shows the temperature distribution on a horizontal

line at half cavern height during extreme cyclic loading.

7.3.3 Stability of the cavern

In this section, the mechanical stability of the simulated cavern is investigated considering

three criteria:

1. “No-dilatancy” criterion: this criterion indicates whether the stress state around

the cavern is in the dilatancy zone or not.
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Figure 7.16: Variation of rock salt temperature at selected distances from the cavern
boundary during cyclic loading phase (a) Scenario 1: low pressure operation (b) Scenario
2: high temperature operation

2. “No-damage” criterion: if the stress state goes beyond the dilatancy boundary, the

damage and micro-cracking start to develop. In order to avoid such a condition,

this criterion has to be fulfilled..

3. “No-tensile stress” criterion: rock salt exhibits poor tensile strength. Therefore, no

tensile stress should be experienced around the cavern.

In the following, the above-mentioned stability criteria are evaluated for the numerical

example explained in the previous section.
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Figure 7.17: Calculated temperature distribution on a horizontal line at half cavern height
during extreme cyclic loading; rock mass temperature at far distance : 50 ◦C

7.3.3.1 “No-dilatancy” criterion

The loading conditions of cavern have to be defined in a way that the stresses around the

cavity remain in the compressibility zone. To determine the state of stress with respect

to dilatancy boundary, the following utilization criterion is defined (Jafari et al., 2011;

Brouard et al., 2011; Wang et al., 2013; Yang et al., 2015):

UC =

√
F dil(I1, θ)√

J2

(7.9)

Where
√
F dil(I1, θ) is the equation of dilatancy boundary in the I1 −

√
J2 plane defined

in Eq. 3.13. Fig. 7.18a shows the schematic representation of “No-dilatancy” criterion.

When UC > 1, the current stress state is below the dilatancy boundary. In this case, the

opening of micro-cracks does not occur and subsequently, damage does not progress. In

contrary, when UC < 1, the stress state locates beyond the dilatancy bounday. Thus, the

operating condition of the cavern is not safe and cavern may experience long-time failure

due to the damage progress. Fig. 7.19 compares the minimum value of UC around the

cavern obtained for the normal operating condition, scenario 1 and scenario 2, respectively.

As it is observed, during the normal and the high temperature operation, the UC value is

more than 1.2 . That means, the internal pressure of the cavern in these loading scenarios

is high enough to keep the stresses below the dilatancy boundary. While, during the first

loading scenario, where the internal pressure reduces drastically, the UC value becomes
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less than one for the points located around the cavern. Thus, for this loading scenario,

the stresses are in the dilatancy zone and the “No-dilatancy” criterion is not fulfilled.

7.3.3.2 “No-damage” criterion

An energy-based quantity defined in Section. 3.4.3 is used to describe damage and micro-

cracking. The amount of energy stored during compression or released during dilatancy

is associated with the volumetric inelastic work per unit volume wvol defined as:

wvol =

∫ t

0

(
I1

3

)
ε̇ievol dt. (7.10)

Where εievol denotes the inelastic volumetric strain and I1 has been already defined in

Eq. 3.9. The above-mentioned equation quantifies the energy of micro-cracking. In the

compressibility domain, the volume of material reduces due to the closing of voids and

micro-cracks. Therefore, mechanical energy is stored in the body and a positive value

for wvol is obtained. While, during dilatancy, the volume increases and energy is released

by micro-cracking, therefore, wvol becomes negative. When the released energy due to

micro-cracking reaches a threshold value wf the material failure occurs. To describe the

damage evolution in the dilatancy domain, the following quantity has been defined as

a ratio between the released inelastic volumetric energy wvol and the maximum released

energy wf in which the material failure takes place.

LFR =


0 wvol ≥ 0

wvol

wf
wvol ≤ 0

(7.11)

Fig. 7.18b is the schematic definition of the LFR factor. In general, the maximum released

energy at failure wf may depend on the stress path. In this thesis, a series of trixial

compression tests with different confining pressures were utilized to quantify the threshold

value wf as a function of minimum principal stress (i.e. wf = f (σ3)). As shown in the

previous section, during the low pressure operation, dilatancy occurs around the cavern.

Therefore, the LFR factor becomes greater than zero, damage and micro-cracking start

to grow up in the material body. Fig. 7.20 shows the contour plot of LFR after 100

cycles for low pressure operating condition. As it is observed, the bottom and the roof of

the cavern are affected by micro-cracking. The evolution of LFR factors for three points

located at the bottom, roof and wall of the cavern have been depicted in Fig. 7.21. The
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Figure 7.18: Schematic definition of stability criteria (a) UC =

√
F dil(I1, θ)√

J2

(b) LFR =

wvol
wf
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Figure 7.19: Contour plot of utilization criterion UC for (a) normal operation after 100
cycles (b) high temperature operation after 100 cycles (c) low pressure operation after
100 cycles

damage progress shows an upward trend at all observation points but with different rates.

Increasing permeability due to the dilatancy and subsequently the long-term failure due

to the micro-cracking are the unfavorable consequences of this loading condition.

7.3.3.3 “No-tensile stress” criterion

Rock salt has a poor tensile strength. The thermo–mechanical loading conditions have to

be defined in a way that no tensile stress is experienced around the cavern. As explained

before, the air temperature during the low pressure working condition reduces to 10 ◦C

over the cyclic loading. This temperature reduction induces high thermal stresses in an

area less than one meter thick around the cavern. Thus, due to the fast cooling and extra

thermal contraction, the tangential component of stress becomes positive at the points

which are very close to the boundary (in particular at the cavern roof). Fig. 7.22 shows

the variation of principal stresses at cavern roof during excavation (days: 0–230), normal

cyclic loading (days: 230–271) and extreme working condition (days: 271–312). As it

is seen from this figure, the minimum principal (i.e. in this case the tangential stress)
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Figure 7.20: Contour plot of LFR for low pressure operation after 100 cycles

becomes positive for loading scenario 1. Therefore, “No-tensile stress” criterion is not

satisfied for this loading condition.

7.3.4 Serviceability of the cavern

The serviceability of the system is affected if a significant reduction in the storage capacity

of the cavern occurs. For this reason, it is important to control the factors which may

increase the rate of cavern closure. In this section, the volume loss of the cavern (VL)

during the cyclic loading phase is evaluated for the defined loading scenarios. The volume

loss of the cavern is calculated as:

VL =
V0 − Vt
V0

. (7.12)
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Figure 7.21: LFR versus time for the bottom, roof and wall of the cavern for loading
scenario 1

here, V0 and Vt are the initial defined volume and the volume after time t, respectively.

Fig. 7.23 shows the changing of VL values for the defined loading scenarios. As it is

observed, the rate of volume loss increases in both loading scenarios. In scenario 1, when

the internal pressure drops down , the rate of volume convergence increases significantly in

comparison to the normal working condition. In this case, the increased creep strain rate

resulted from the higher deviatoric stresses accelerates the cavern closure. Regarding the

second loading scenario, although, the internal pressure of the cavern slightly increases,

the rate of volume loss has still an upward trend. In this case, the creep strain rate

increases under the influence of temperature. Thus, the rate of volume loss increases in

both cases.
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Figure 7.22: The principal stresses at cavern roof during excavation (days: 0-230), normal
cyclic loading (days: 230-271) and extreme working condition (days: 271-312) (a) low
pressure operation (b) high temperature operation
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8 Conclusions and recommendations

8.1 Summary and conclusions

In the present work, the effects of stress, temperature and time on the mechanical behavior

of rock salt have been investigated. The main objective of the study is to develop an

adequate numerical model which takes into account the most important processes affecting

the development of stresses and strains around salt caverns. To achieve this goal, proper

constitutive models are required to describe the material behavior of rock salt under

different loading conditions at different time scales. The employed constitutive model in

this thesis combines three existing models with some modifications to get benefit from

their positive features for the specific purpose of the performed investigation. This allows

applying the model in different types of simulations in terms of loading conditions (i.e.

constant loading, monotonic loading and cyclic loading) as well as different time scales

(i.e. short term or long term). The Desai model introduced in Section. 3.4.1 is based

on a single-surface plasticity concept which avoids the difficulties regarding numerical

implementation. The employed non-associated flow rule in this model yields to better

description of the volumetric plastic strain. The dependency of the yield surface on Lode’s

angle results in different material responses in triaxial compression, shear and extension

tests. The model takes into account the material dilatancy and compressibility which

enhances the modeling of the volumetric behavior and improves the fit to the experimental

data. In addition, the failure boundary allows the model to account for the short-term

failure of the rock salt in strength tests. Furthermore, the rate dependency described

via the viscoplasticity formulation explains the rate dependent behavior of rock salt. To

describe the time–dependent behavior of rock salt, the modified creep law in Section. 3.4.2

has been formulated based on the Norton-Hoff creep model in which the creep strain rate is

a function of the applied deviatoric stress and temperature. In this study, the Norton-Hoff

model has been modified by introducing a new creep potential surface in order to have a

better description for the volumetric creep deformation. According to Cristescu (1993),

the damage development in rock salt can be described using the released volumetric strain

161
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energy. This idea has been employed by including an energy-dependent damage parameter

into the constitutive model. A commonly used function for rock materials has been also

employed to describe the damage evolution. This formulation allows us to describe the

strain softening in triaxial strength test, the tertiary creep in long-term creep tests and

the failure in cyclic loading tests. The constitutive model has been implemented in the

finite element code Code-Bright and the material parameters have been identified using

relevant experimental data. After that, in order to investigate the influence of internal

pressure and temperature on the stability and serviceability of cavern, it’s operation

has been analyzed numerically. In Chapters. 6.1 and 7.3, a staggered approach has been

presented to model the coupled thermo-mechanical cyclic behavior in a typical compressed

air storage cavern excavated in rock salt. The proposed approach includes the estimation

of the air pressure and temperature variations inside the cavern as well as the safety

and serviceability assessment of the storage cavern. This approach may be considered

as a useful tool for engineering design and operation of such facilities. To accomplish

this, first, the internal pressure and temperature of the cavern are estimated using an

analytical thermodynamic model for the air injection/withdrawal processes. Then, in the

second step, the obtained results from the first step are defined as the boundary condition

for the finite element model of the cavern. The introduced constitutive model has been

employed to describe the stress-strain relation of rock salt under the influence thermo-

mechanical loading conditions. After that, in order to investigate the effect of internal

temperature and pressure on the stability and serviceability of cavern, its operation under

extreme loading conditions have been analyzed numerically. The obtained results show

that during the normal operating condition, the applied loads to the rock salt medium

generate only thermoelastic and steady-state creep deformations without any dilation

or micro-cracking. However, when the loading pattern of the cavern is changed to the

extreme condition, the stability and serviceability of the system are clearly affected by

the internal pressure and temperature. The numerical results demonstrated that the

stability factors of the system are strongly governed by the internal pressure of the cavern.

For this reason, the internal pressure during the cyclic loading operation should be set

in a way that the stresses around the cavern satisfy the “No-dilatancy”, “No-damage”

and “No-tensile stress” criteria. Otherwise, the micro-cracking and damage propagation

may result in unfavorable consequences such as gas leakage and rock spalling around

the cavern. On the other hand, the high temperature working condition mostly affected

the long-term serviceability of the cavern. In this case, the increased creep strain rate

at elevated temperature reduces the storage capacity of the cavern in long time periods
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and endangers the serviceability of the system. Finally, the following conclusions may be

drawn based on the results obtained in this study:

• Obviously, the safety assessment of rock salt caverns requires careful consideration

of thermo-hydro-mechanical (and chemical) processes. These processes interact and

influence each other in a complex manner. Additionally, they do not necessarily

have the same spatial and temporal scales. For example, the flow pathways created

by the damage increase the permeability of rock and represent the potential risk for

gas leakage around the cavern. Subsequently, if the pore pressure locally exceeds

the minimum principal stress, the fluid infiltration in rock salt takes place and the

local widening of grain boundaries occurs. Under such conditions, the mechanical

behavior of the rock salt is affected by the gas and liquid phases. On the other

hand, the temperature of rock salt around the cavern may change due to the gas

injection and withdrawal processes. This temperature change introduces additional

stresses in a narrow zone around the cavern due to the thermal expansion and con-

traction. Moreover, the temperature variation affects the rate of creep deformation

and changes the cavern closure rate.

• The minimum pressure in a compressed air storage cavern has to be set in a way

that all the stresses around the cavern remain below the dilatancy threshold. This

minimum pressure value depends on the cavern depth, in-situ stresses as well as the

mechanical properties of rock salt medium. The “No-dilatancy” criterion explained

in Section 7.3.3.1 is a utilization criterion that can be used in simulation-based

predictions to make sure that the stresses are below the dilatancy boundary.

• The “No-damage” criterion explained in Section. 7.3.3.2 is a measure to identify the

areas which are more prone to micro-cracking. Obtained results from the presented

numerical example show that, the bottom and the roof of the cavern are more likely

to experience damage and micro-cracking if the internal pressure of the cavern is

relatively low. Increasing the rock permeability due to dilatancy and subsequently

the gas leakage are some of the unfavorable consequences of this loading condition.

• The low pressure working condition results in high deviatoric stresses around the

cavern. Due to this fact, the creep strain rate which is a function of deviatoric

stress increases as well. It has been shown in Section. 7.3.4 that the volume loss

of the cavern is another criterion which should be checked to identify the minimum

allowable pressure.
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• As shown in Section. 7.3.2, the temperature fluctuation in the rock around the

cavern only takes place in a narrow zone less than one meter thick. However, due

to its effect on the stress distribution (i.e. tensile stress at the boundary due to

the low temperature), the thermal induced deformation in this zone should not be

neglected for reliable predictions.

• Very low pressure working condition leads to the low temperature condition inside

the cavern. As shown in Section. 7.3.3.3, the low temperature condition results in

thermal contraction at the points which are located close to the boundary and may

create tensile stresses at the wall. Since the tensile strength of the rock salt is very

small (i.e. around 1.8 MPa), such operating conditions should be avoided. The “No-

tensile stress” criterion explained in Section 7.3.3.3 can be used to find the allowable

minimum temperature in the cavern. The suggested minimum temperature for the

numerical example in this study is around 25 ◦C.

• The maximum allowable temperature of air is also a key factor within the design

and operating process of the storage cavern. As shown in Section. 7.3.4, the creep

deformation is an exponential function of temperature. Therefore, high temperature

condition in a cavern increases the creep deformation of rock salt and subsequently,

accelerates the cavern convergence. Another drawback of high temperature working

condition could be the material weakening due to the high temperature. The volume

loss of the cavern (as shown in Section. 7.3.4) can be considered as a criterion to

identify the maximum allowable temperature. The suggested maximum temperature

for the numerical example in this study is around 90 ◦C.

8.2 Suggestions for further investigations

In conclusion, the following items are suggested for further investigations in this field of

study.

• Verification of constitutive models using in-situ measurement data; The presented

approach needs to be verified against real data or/and representative laboratory

tests that may be considered as a challenging task for future. Since the solution-

mined caverns are very deep structures, conducting the field measurements which

might help us to understand the real response of the host rock are practically very

difficult. Therefore, it is needed to development new in-situ investigatory methods

for determining rheological material parameters.
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• The numerical simulations can be extended to three dimensions. The 3D simulations

are useful to model a group of caverns and investigate their effect on each other.

• It is suggested to investigate the influence of healing, in particular, in cyclic loading

conditions.

• The effects of temperature, loading rate and cyclic loading on the locus of dilatancy

boundary in the stress space are still open questions.

• The stress field changes in the presence of pore fluid pressure. More investigations

regarding the development of effective stress in the presence of pore fluid pressure

are suggested.

• More accurate prediction regarding the thermodynamics of gas/air in caverns is an

interesting research topic. This can be achieved through CFD modeling (computa-

tional fluid dynamics) of gas inside the cavern.

• The deformation mechanism under low stress and temperature has not been fully

understood and it may affect the long-term predictions. This mechanism can be

included in calculations.
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effects of a rapid depressurization in a gas cavern’, Acta. Geot. 9(1), 181–186.
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Bérest, P., Djizanne, H., Brouard, B. & Hévin, G. (2012), Rapid depressurization: can

they lead to irreversible damage?, in ‘SMRI conference, Regina, Canada, 23-24 April’.

Bolzon, G. & Buljak, V. (2011), ‘An effective computational tool for parametric studies

and identification problems in materials mechanics’, Comput Mech 48, 657–687.
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Einbeziehung von Gefügeschädigung und tertiärem Kriechen auf der Grundlage der

Continuum-Damage-Mechanik’, Geotechnik 21, 259–263.

Huang, X. & Xiong, J. (2011), ‘Numerical simulation of gas leakage in bedded salt rock

storage cavern’, Procedia engineering 12, 254–259.

Hunsche, U. (1984), Fracture experiments on cubic rock salt samples, in ‘The Mechanical

Behavior of Salt, Proc. of 1st Conf’, pp. 169–179.

Hunsche, U. (1993), ‘Strength of rock salt at low mean stress’, Geotechnik-Sonderheft,

Glückauf, Essen pp. 160–163.

Hunsche, U. (1994), Uniaxial and triaxial creep and failure tests on rock: experimental

technique and interpretation, in ‘Visco-Plastic Behaviour of Geomaterials’, Springer,

pp. 1–53.

Hunsche, U. E. (1992), True Triaxial Failure Tests on Cubic Rock Salt Samples. Experi-

mental Methods and Results, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 525–

536.

Hunsche, U. & Hampel, A. (1997), ‘Rock salt- the mechanical properties of the host rock

material for radio active waste’, Eng. Geol. 52, 271–291.



174 Bibliography

Hunsche, U. & Hampel, A. (1999), ‘Rock salt- the mechanical properties of the host rock

material for radio active waste repository’, Eng. Geol. 52, 271–291.

Hunsche, U. & Schulze, O. (1994), ‘Das Kriechverhalten von Steinsalz’, Kali und Steinsalz

11(8/9), 238–255.

Hunsche, U., Schulze, O., Walter, F. & Plischke, I. (2003), Projekt Gorleben

9G2138110000, thermomechanisches Verhalten von Salzgestein., Technical report,

BGR, Hannover.
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Zeitabhängiges Setzungsverhalten von Gründungen in Schnee, Firn und Eis

der Antarktis am Beispiel der deutschen Georg-von-Neumayer- und Filchner-Station

8 (1984) Ulrich Güttler
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unter Berücksichtigung der Verformung im Boden

23 (1995) Thomas Neteler

Bewertungsmodell für die nutzungsbezogene Auswahl von Verfahren zur Altlastensanierung

24 (1995) Ralph Kockel

Scherfestigkeit von Mischabfall im Hinblick auf die Standsicherheit von Deponien

25 (1996) Jan Laue

Zur Setzung von Flachfundamenten auf Sand unter wiederholten Lastereignissen

26 (1996) Gunnar Heibrock

Zur Rissbildung durch Austrocknung in mineralischen Abdichtungsschichten

an der Basis von Deponien

27 (1996) Thomas Siemer

Zentrifugen-Modellversuche zur dynamischen Wechselwirkung zwischen Bauwerken

und Baugrund infolge stoßartiger Belastung

28 (1996) Viswanadham V. S. Bhamidipati

Geosynthetic Reinforced Mineral Sealing Layers of Landfills

29 (1997) Frank Trappmann

Abschätzung von technischem Risiko und Energiebedarf bei Sanierungsmaßnahmen

für Altlasten

30 (1997) André Schürmann
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58 (2016) Yang Yang

Analyses of Heat Transfer and Temperature-induced Behaviour in Geotechnics

59 (2017) Alborz Pourzargar

Application of Suction Stress Concept to Partially Saturated Compacted Soils

60 (2017) Hanna Haase

Multiscale Analysis of Clay-Polymer Composites for Geoenvironmental Applications

61 (2017) Kavan Khaledi

Constitutive Modeling of Rock Salt with Application to Energy Storage Caverns


	Vorwort des Herausgebers
	Acknowledgements
	Abstract
	Zusammenfassung
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Background
	Motivation and objectives
	Layout of the thesis

	State of the art
	Micro-structure of rock salt
	Defects in crystalline structure
	Deformation map
	Deformation induced by dislocation movement
	Deformation induced by solution precipitation
	Deformation induced by inter-crystalline micro-cracking

	Phenomenological behavior of rock salt
	Elastic behavior
	Rock salt behavior in short-term triaxial strength tests
	Short-term failure boundary
	Long-term failure boundary/ dilatancy boundary
	Effect of stress-path on the short-term behavior of rock salt
	Effect of load/strain rate on the mechanical behavior
	Effect of temperature on the short-term strength
	Permeability changes and the effect of pore pressure
	Tensile strength of rock salt

	Rock salt behavior in long-term creep tests
	Transient, steady-state and tertiary creep
	Effect of temperature on creep behavior

	Rock salt behavior under cyclic loading

	Existing constitutive models for rock salt
	Classification of the existing models
	A macro-structural constitutive model: Cristescu et al. model
	A micro-structural constitutive model: Günther/Salzer model

	Modeling of storage systems in rock salt formations
	Solution-mining process
	Finite element simulation of storage systems in rock salt
	In-situ condition
	Thermodynamic of gas in the cavern
	Geometry of the cavern
	Boundary conditions and time scale of the simulation
	Thermo-Hydro-Mechanical coupling

	Design criteria for salt caverns
	No-dilatancy criterion
	Short-term failure ratio (SFR)
	Long-term failure ratio (LFR)
	Tensile failure
	Cavern convergence
	Ground subsidence
	Gas/oil leakage


	Summary

	Structure of the implemented constitutive models
	General
	Model I: an empirical creep model
	Model II: a viscoelastic model
	Model III: a viscoplastic-creep-damage model
	Viscoplastic deformation
	Creep deformation
	Damage parameter

	Summary

	Model implementation in FEM
	General procedure
	Stress update subroutine
	Constitutive model subroutine
	Summary

	Determination of material parameters
	Determination of material parameters for BGRa model
	Determination of material parameters for LUBBY2 model
	Determination of material parameters for viscoplastic-creep-damage model
	Parametric study of the viscoplastic-creep-damage model
	Summary

	Introduction to the employed modeling techniques
	Staggered thermo-mechanical modeling
	Thermodynamics of the gas inside the cavern
	Mass and energy balance equations
	Validation via two case studies

	Model approximation using metamodeling technique
	Parameter identification technique
	Global sensitivity analysis
	Variance based method
	Elementary effect method

	Summary

	Numerical simulation of gas storage caverns in rock salt formations
	Example I: constant mechanical loading
	Metamodel construction for the cavern
	Sensitivity analysis of the numerical salt cavern
	Parameter identification for the salt cavern model

	Example II: cyclic mechanical loading
	Results and discussion
	Stress paths around the cavern
	Factor of safety of the cavern
	Long-term failure due to the damage progress
	Serviceability of the cavern
	Permeability changes around the cavern

	Example III: cyclic thermo-mechanical loading
	Results and discussion
	Temperature around the cavern
	Stability of the cavern
	``No-dilatancy'' criterion
	``No-damage'' criterion
	``No-tensile stress'' criterion

	Serviceability of the cavern


	Conclusions and recommendations
	Summary and conclusions
	Suggestions for further investigations

	Bibliography

