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Vorwort des Herausgebers

Die vorliegende Promotion von Frau Mahmoudi wurde im Rahmen des Projekts ANGUS+

(gefördert durch die Bundesregierung im Programm GEOTECHLOGIEN II) angefertigt.

In diesem großen Forschungsverbundvorhaben ging es u.a. um die Untersuchung der

Möglichkeit der Speicherung von erneuerbarer Energie in Form von Druckluft in un-

terirdischen Hohlräumen, im Speziellen um die Nutzung von Salzkavernen. Salzkaver-

nen werden bereits heute zur Energiespeicherung, u.a. von Erdgas oder Erdöl benutzt.

In diesem Zusammenhang spricht man von saisonalen Speichern, da ihre Beschickung

bzw. Entnahme im mehreren Monate Zyklus erfolgt. Hingegen handelt es sich bei

der Nutzung als Speicher für erneuerbare Energie um eine mehrtägige Betriebsabfolge.

Die Bemessung von Kavernen unter derartigen Szenarien ist weitestgehend Neuland und

die tatsächlichen Praktiken, auf Grund der etablierten Strukturen zwischen Betreibern,

Aufsichtsbehörde und Experten, für Außenstehende nicht auf den ersten Blick durch-

schaubar. Die Konzepte zur probabilistischen Analyse sind z.B. im Konstruktiven In-

genieurbau sehr gut etabliert, wo hingegen ihre Anwendung auf die spezifischen Fragen

der Geotechnik nur exemplarisch und oftmals akademisch behandelt wird. Frau Mah-

moudis Arbeit leistet einen hervorragenden Beitrag zur Verbesserung dieser Situation.

Ausgehend von den äußerst anspruchsvollen Konzepten der Statistik, Probabilistik und

der Kontinuumsmechanik gelingt es Frau Mahmoudi schlussendlich Aussagen bezüglich

der Zuverlässigkeit von Salzkavernen in Abhängigkeit derer Betriebsparameter zu erzie-

len. Derartige praxisrelevante Ergebnisse in vergleichbarere Art sind dem Gutachter nicht

bekannt.

Salzkavernen sind allein wegen ihren Abmessungen und dem damit verbundenen Volumen

der Hohlräume Bauwerke, die einer eingehenden Analyse bedürfen. Daneben ist Stein-

salz als Wirtsgestein in seinem thermischen und mechanischen Verhalten äußerst kom-

plex. Bezüglich der
”
Baugrundschichtung“ ist festzustellen, das Steinsalz äußerst hetero-

gen auftritt und die Konstitutiveigenschaften deutlich von seiner Diagenese geprägt sind.

Aus diesen Gründen haben deterministische Analysen nur einen geringen Wert. Statis-

tische Konzepte zur Erfassung der Variabilität einzelner Parameter als auch zur Abbil-

dung der räumlichen Variabilität sind unbedingt erforderlich. Diese computerbasierten
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ii Vorwort des Herausgebers

Konzepte der Zuverlässigkeitsanalyse sind numerisch sehr aufwendig und erfordern un-

terstützende Konzepte wie etwa Ersatzmodelle und
”
subset modelling“-Ansätze. Genau

diesen (existierenden) statistischen Werkzeugen widmet sich das erste Kapitel der Dis-

sertation. Neben den genannten Methoden werden die globale Sensitivitätsanalyse und

die Methode der Zufallsfelder eingeführt. Kapitel 2 widmet sich der Abbildung des

thermisch-mechanisch gekoppelten Konstitutivverhaltens von Steinsalz. Es werden drei

gut etablierte unterschiedlich komplexe Modelle eingeführt und in die verwendete FE-

Software erfolgreich implementiert. Zusätzlich wird die quantitative Beschreibung der

Dilatanzgrenze diskutiert, die bei der späteren Herleitung und Überprüfung der Sta-

bilitätskriterien eine entscheidende Rolle spielt. Kapitel 3 ist ein erstes Kernstück der

Arbeit von Frau Mahmoudi. Detailliert und sehr gut nachvollziehbar wird das verwen-

dete allgemeine Konzept zur Systemanalyse nun auf den Fall der Salzkaverne angewendet.

Dabei steht die Diskussion des Initialzustands im Vordergrund. Dieser wird durch zwei

Komponenten beeinflusst, den geostatischen Spannungszustand und die darauf folgenden

Spannungsumlagerungen zufolge des schrittweisen Auffahrens der Kaverne. Durch detail-

lierte Simulationen, die sowohl den zeitlichen Verlauf als auch die prozessspezifischen Pa-

rameter des sogenannten
”
solution-mining“ abbilden, kann Frau Mahmoudi eindrücklich

zeigen, dass diese Vorgänge nur einen geringen Einfluss auf den Primärspannungszustand

vor dem eigentlichen zyklischen Betrieb der Kaverne haben. Die für eine Zuverlässigkeits-

betrachtung notwendigen Kriterien der Gebrauchstauglichkeit und der Standsicherheit

existieren für Salzkavernen unter
”
hoch-frequenter“ zyklische Beanspruchung bisher nicht.

Frau Mahmoudi implementiert neben der Berücksichtigung der Oberflächensetzungen vier

weitere neuartige Kriterien, welche die speziellen Eigenschaften von Steinsalz berücksichti-

gen: Dilatanz, geringe Zugfestigkeit, relavante Kriechverformungen und Schädigungspo-

tential. Kapitel 5 beinhaltet die Ergebnisse der implementierten und durchgeführten glob-

alen Sensitivitätsanalysen (GSA). Sehr gut verständlich, textbuchartig, wird in diese für

Geotechniker komplexe Materie eingeführt. Von herausragender Bedeutung ist hier aus

meiner Sicht die Erarbeitung einer Vorgehensweise zur Auswahl der angemessenen Meth-

ode zur GSA. Dabei werden sowohl der Grad der Nicht-Linearität des behandelten Randw-

ertproblems als auch eventuell vorhandene Interaktionen zwischen unterschiedlichen Mod-

ellparametern analysiert. Sowohl zur Durchführung der GSA als auch für die im Kapitel 5

durchgeführten probabilistischen Analysen verwendet Frau Mahmoudi sogenannte Ersatz-

modelle. Diese werden in ihren konzeptionellen Unterschieden, ihren Vor- und Nachteilen

gegenübergestellt und bewertet. Im Rahmen der probabilistischen Berechnungen werden

unterschiedliche Möglichkeit zur
”
Beschleunigung“ der Monte-Carlo-Simulationen imple-

mentiert. Eindrucksvoll kann die Effizienz derartiger Konzepte gezeigt werden. Besonders
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für sehr geringe Versagenswahrscheinlichkeiten sind trotz Ersatzmodellen eine Vielzahl

von sampling-Punkten notwendig. Durch die von Frau Mahmoudi implementierte Subset-

Methode kann der Rechenaufwand signifikant reduziert werden. Bevor Kapitel 7 die

Ergebnisse der Arbeit zusammenfasst und einen Ausblick gibt behandelt Kapitel 6 die

Verwendung von Zufallsfeldern im Zusammenhang mit numerischen Analysen von Struk-

turen im Steinsalz. Eindrücklich kann gezeigt werden, wie durch die Wahl geeigneter

statistischer Parameter (hier u.a. der Auto-Korrelationslänge) räumliche Verteilungen

d.h. Felder der Materialparameter erzeugt werden können, die trotz nur eines Parameter-

satzes spatial den in Steinsalz zu beobachtenden Schichtungen ähneln. In detaillierter Art

und Weise kann gezeigt werden, dass random-variables Simulationen mit homogenen Bau-

grund geringere Versagenswahrscheinlichkeiten liefern als die Analyse mit Zufallsfeldern.

Dies unterstreicht in hervorragender Art und Weise die Notwendigkeit der Berücksichti-

gung von Zufallsfeldern bei der Zuverlässigkeitsanalyse.

Die Arbeit von Frau Mahmoudi bewegt sich international auf höchstem Niveau der nu-

merischen Geomechanik. Die Arbeiten zur Zuverlässigkeitsanalyse von Speicherkaver-

nen im Steinsalz sind international wegweisend und nach Wissen des Gutachters in ihrer

Systematik und Qualität einzigartig. Neben den spezifischen Fragen der Modellbildung

derartiger Kavernen bei täglicher zyklischer Beanspruchung entwickelt Frau Mahmoudi

ein Konzept auf probabilistischer Grundlage zur Durchführung von Zuverlässigkeitsanal-

ysen. Unter Berücksichtigung sowohl der stochastischen Natur der Konstitutivparameter

von Steinsalz als auch unter Verwendung von Zufallsfeldern kann Frau Mahmoudi prax-

isrelevante Aussagen zu den signifikanten Betriebsparametern von derartigen Kavernen

ableiten.

Bochum, Oktober 2017 Tom Schanz
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Abstract

The fluctuating nature of renewable energy sources can be managed by storing the surplus

of electrical energy in an appropriate reservoir. The excess electricity available during off-

peak periods of consumption may be used to compress air or electrolyse Hydrogen. After-

wards, the pressurised gas is stored in the rock salt cavities and discharged to compensate

the shortage of energy when required. During this process, the rock salt surrounding the

cavern undergoes different loading conditions. The validation of the short and long-term

integrity and stability of rock salt cavern is a prerequisite in their design process. In or-

der to achieve a reliable geotechnical design, the stress-strain response of rock salt under

such loading condition has to be identified and predicted. To investigate the rock salt

behaviour during the three phases of cavern’s life i.e. solution mining, debrining process

as well as cyclic operation, a deterministic study using numerical analysis is conducted.

The computational model relies primarily on the governing constitutive model for pre-

dicting the behaviour of rock salt cavity. Hence, some constitutive models are utilised to

take into account different creep phases and dilatancy progress. The contributed input

parameters in the constitutive model can be calibrated using the experimental measure-

ments. However, because of the significant levels of uncertainties involved in the design

procedure of such structures, a reliable design can be achieved by employing probabilistic

approaches. Therefore, the numerical calculation is extended by statistical tools such as

sensitivity analysis, probabilistic analysis, random field discretisation and reliability-based

design to evaluate design parameters of paramount need for practice.

In the present study, sensitivity measures of different variables involved in the mechanical

response of cavern are computed by three different global sensitivity methods, namely

the Morris, Random balance designs and Sobol’/Saltelli methods. An interpretation of

the sensitivity indices provided by different methods is presented through a comparative

study. The execution time of the numerical model makes the conduction of a sensitivity

analysis mostly prohibitive, because performing these analyses require hundreds of model

runs. Therefore, the original finite element models are substituted by surrogate modelling

techniques.
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x Abstract

The propagation of parameter uncertainties and the failure probability against different

failure criteria are evaluated by utilising a Monte Carlo-based analysis, considering key

input variables. Subset simulation methodology is also performed to determine the failure

probability of the system with less number of required simulation runs. This methodology

is further validated through a comparison with a Monte Carlo-based probabilistic analysis.

The stability of the cavern under different loading scenarios is evaluated, and finally, a

reliability-based analysis approach is employed to obtain the minimum admissible internal

pressure in the cavity.

In the following, the random field method is used to study the effect of spatial uncertainty

of the constitutive parameters on the behaviour of the rock salt cavern. To achieve

a reliable design, a probabilistic model is presented to compute the failure probability

of a cavern mined in a spatially varying salt dome. Here, the no-dilatant condition

around the cavity is regarded as the failure criterion. In this regard, a thermo-mechanical

model of a natural gas storage in the rock salt, employing BGRa creep law, is developed.

Afterwards, the most effective input variable on the model response is identified, using

global sensitivity analysis. The Karhunen-Loève expansion is introduced to generate the

random field. In the following, the subset simulation approach is utilised to facilitate the

execution of Monte Carlo method. The findings of this part emphasise that considering

spatial variability in rock properties significantly affects the reliability of a solution-mined

cavity.



Zusammenfassung

Die Energiegewinnung mittels erneuerbarer Ressourcen unterliegt natürlichen Schwankun-

gen. Ein Ausgleich intermittierender Unterschiede zwischen Energieerzeugung und Net-

zauslastung kann durch eine zeitweise Speicherung überschüssiger Energie in einem geeig-

neten Reservoir erzielt werden. Der während der Überschussphasen zur Verfügung ste-

hende Strom kann zur Erzeugung von Druckluft oder zur Wasserstoffgewinnung per

Elektrolyse genutzt werden. Das komprimierte Gas kann anschließend in Kavernen in

Salzgestein gelagert werden und bei Bedarf zur Energieerzeugung wieder entnommen

werden. Während dieses Prozesses erfährt das umliegende Salzgestein verschiedene Be-

lastungsszenarien.

Die Überprüfung der kurzzeitigen sowie dauerhaften Gebrauchstauglichkeit und Stabilität

der Salzkavernen ist die Grundvoraussetzung während des Entwurfsprozesses. Um eine

zuverlässige geotechnische Bemessung durchzuführen, muss das spannungsabhängige Ver-

formungsverhalten des Salzgesteins bei entsprechenden Belastungsszenarien bekannt bzw.

prognostizierbar sein. Zur Untersuchung der drei Nutzungsphasen einer solchen Kaverne,

der Kavernensolung, der Solentleerung und der Betriebsphase mit zyklischer Belastung,

wird eine deterministische Simulation mittels einer numerischen Analyse durchgeführt.

Das Berechnungsmodell beruht maßgeblich auf dem verwendeten Stoffgesetz, das zur Vo-

raussage des Verhaltens der Kaverne im Salzgestein genutzt wird. Dementsprechend

werden geeignete Stoffgesetze verwendet, um die verschiedenen Kriechphasen und das

Dilatanzverhalten zu berücksichtigen. Die zugrundeliegenden Modellparameter können

mittels experimenteller Daten kalibriert werden. Da allerdings ein hohes Maßan Un-

sicherheiten im Bemessungsvorgang solcher Strukturen vorliegt, können probabilistische

Ansätze verwendet werden, um eine zuverlässige Bemessung zu erreichen. Hierzu wird die

numerische Berechnung um statistische Hilfsmittel ergänzt, wie der Sensitivitätsanalyse,

probabilistischen Analyse, Diskretisierung mittels Zufallsfelder, sowie der zuverlässigkeits-

basierten Bemessung, um die Entwurfsparameter zu evaluieren, die für die Praxis von

höchster Bedeutung sind.

In der vorliegenden Arbeit wurden die Sensitivitäten der für das mechanische Verhal-

ten der Kaverne relevanten Parameter untersucht. Dazu wurde drei unterschiedliche

xi



xii Zusammenfassung

Methoden zur Bestimmung der globalen Sensitivität angewandt, namentlich die Morris-

, die Random Balance Design- sowie die Sobol’/Saltelli-Methoden. Eine Auswertung

der durch die verschiedenen Methoden ermittelten Sensitivitäten wird durch eine Ver-

gleichsstudie vorgestellt. Die Durchführung einer Sensitivitätsanalyse wird durch den

Berechnungsaufwand des numerischen Modells stark eingeschränkt, da für eine solche

Analyse hunderte Modellaufrufe erforderlich sind. Daher wird das ursprüngliche Finite-

Elemente Modell mittels eines Metamodells substituiert.

Die Auswirkung der Parameterunschärfe und die Versagenswahrscheinlichkeit hinsichtlich

verschiedener Versagenskriterien wird unter Berücksichtigung der maßgebenden Eingangspa-

rameter, mittels einer auf dem Monte-Carlo-Ansatz beruhenden Auswertung, untersucht.

Zur Reduzierung des Rechenaufwandes, insbesondere bei der Berechnung von geringen

Versagenswahrscheinlichkeiten, wird zudem eine Subset-Simulation verwendet. Auch diese

Methode wurde mittels einer probabilistischen Analyse auf Monte-Carlo-Basis validiert.

Die Standsicherheit der Kaverne wird für verschiedenen Belastungsszenarien untersucht,

um schließlich, mittels eines zuverlässigkeitsbasierten Berechnungsansatzes, den minimal

zulässigen Innendruck der Kaverne zu bestimmen.

Anschließend wird die Methode der Zufallsfelder verwendet, um den Einfluss der räum-

lichen Unsicherheiten der Konstitutivparameter auf das Verhalten der Salzkaverne zu un-

tersuchen. Ein probabilistisches Modell wird vorgestellt mit dem die Versagenswahrschein-

lichkeit einer in räumlich veränderlichem Salzgestein erstellten Kaverne berechnet werden

kann. Als Grenzbedingung wird diesbezüglich ein nicht-dilatantes Verhalten der Kav-

ernenumgebung angesetzt. Hierzu wird, unter Verwendung des BGRa-Kriechgesetzes,

ein thermo-mechanisches Modell für die Speicherung von Erdgas in Steinsalz entwick-

elt. Durch Verwendung der globalen Sensitivitätsanalyse können die Parameter mit

dem größten Einfluss auf die Modellantwort identifiziert werden. Die Karhunen-Loève-

Erweiterung wird vorgestellt, um die Zufallsfelder zu erstellen. Anschließend wird die

Subset-Simulation verwendet, um die Durchführung der Monte-Carlo-Simulation zu vere-

infachen. Die Ergebnisse dieses Abschnittes unterstreichen, dass die räumliche Streuung

der Felseigenschaften einen erheblichen Einfluss auf die Zuverlässigkeit solch einer durch

Solung erzeugten Kaverne haben.
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1 Introduction

1.1 Motivation and Background

The production of electrical energy from renewable resources, like solar, wind and geother-

mal have observed increasing attention in recent years. A vast amount of investment has

been made in many developed countries to phase out the fossil fuels/ nuclear sources and

transmit to the renewable energy resources. In 2014, the share of renewable resources

in gross German power production reached to more than a quarter (AGEB, 2016). A

challenge in using the renewable energy resources is their intermittent production profile.

Renewable sources of energy may not provide a sustainable power supply to handle the

network demands. During the history of producing electrical energy, various storage fa-

cilities have been developed e.g., batteries, surface pumped-hydro power plants, thermal

storage facilities and underground storage in the porous medium or deep rock cavities.

This dissertation analyses the behaviour of the deep rock salt repositories. In this ap-

proach, the pressurised gas, compressed by the excess electrical energy, is stored in the

caverns and released when there is a peak of energy demand in the consumption grid.

The rock salt formation, which has provided cavities for the storage of hydrocarbons and

nuclear waste disposal for more than three decades, is an appropriate host rock for such

repositories. In general, salt cavities provide very large and secure underground either

storage or disposal for materials that do not dissolve salt. The idea of storing gases and

hydrocarbons in the solution mined cavities was conceived in Canada in the early 1940s

(Bay, 1963). Such energy storages were basically planned to peak shaving the strong

fluctuation in the seasonal demands. The first cavern in rock salt to store natural gas was

excavated in Michigan, U.S. in the 1950s (Pollak, 1994). Rock salt is ideally suited for

storing pressurized gas because it is almost impermeable with high compressive strength.

Also, due to the particular viscoplastic features of rock salt, a large proportion of stress

may be relieved by deformation instead of the brittle fracture. Furthermore, the rock salt

shows healing properties, i.e., allowing any cracks that may occur in the damaged zone

to seal quickly. Besides proper hydro-mechanical properties of rock salt, its solubility in

1
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water makes the excavation process economic, rather than the other available options.

The salt can be leached out from the domal structure or bedded salt strata to make the

required storage volume by the solution mining. All of the mentioned reasons justified

the construction of the significant percentage of gas storage caverns in rock salt or de-

pleted salt mines around the world (see Fig. 1.1). Favourable conditions to excavate a salt

cavern can be found in Europe, Asia, and Gulf Coast states, USA. Salt caverns in the

U.S. can deliver up to 23% of total natural gas from underground storage on a given day

(EIA, 2015). China scheduled further expansion plans in Jintan gas storage field, near to

Shanghai. Jintan gas storage is designed to have 36 gas wells with a total storage capacity

more than one billion cubic meters (Wu, 2012). In early 1970s France and Germany began

gas storage projects in salt at Tersanne and Kiel storage fields, respectively. Nowadays,

cavern storages provide more than 17% of European storage capacity, i.e. around 18 bcm

(Hureau, 2016). The most suitable salt deposit in Europe, Zechstein (Upper Permian) is

extended in the northern Germany (Gillhaus, 2007). Domal salt formations in the Zech-

stein stratum in Germany are nearly homogeneous, involving a high proportion of halite

(> 90%). They provide an ideal depth for mining a pressurised gas storage, up to 1700m

with no excess of the insoluble inter-layers. These facts encouraged German industry

to do enormous investments in the last three decades in the installation of natural gas

storages in deep underground formations. For instance, Etzel storage site in Germany in-

cludes 29 gas caverns with a maximum storage volume of 1.8 bcm. Meanwhile, Germany

has numerous expansion plans for increasing the share of renewable energies in the power

production and different consumption sectors. For instance, a major development project

is launched for the offshore wind farms in the northern regions, and the government in-

troduced many stimulus projects for industrial and agricultural consumers to raise the

renewable energy consumption (see Fig. 1.2). Therefore, underground energy storage in

the rock salt caverns is a considerable opportunity.

In the context of underground storage in rock salt caverns, the surplus electrical energy

can be utilised to compress air, that will be stored in underground cavities and discharged

to pass a turbine generator when the electricity is further required. This concept, known

as compressed air energy storage CAES, was firstly applied in the 1980s. Currently,

there are two operational CAES plants worldwide. One is located in Huntorf, Germany,

providing 290 MW storage capacity (Crotogino et al., 2001). This storage plant includes

two mined salt caverns. Another rock salt cavity provides compressed air storage medium

of about 19.6 mcf for an 110 MW plant in Alabama, USA (Pollak, 1994).

The excess energy also may be utilised to electrolyse water to Hydrogen and Oxygen.

The Hydrogen is compressed and stored in the solution mined caverns, subsequently, to
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release further and compensate the energy lack in consumption peaks. Hydrogen as a

chemical storage media has a high volumetric storage density. Thereupon, it is regarded

as a suitable media to store a large amount of expected surplus energy generated by

the expansion plans of the renewable plants. Long term positive experiences do exist

with high-pressure H2 underground storage facilities in rock salt worldwide. Two storage

plants in the U.S. (Texas) are managed by ConocoPhillips and Praxair (Leighty, 2008).

Another one in Teeside, U.K. is managed by Sabic Petrochemicals (Lord et al., 2011).

However, although an underground storage plant is generally safer and more stable

than similar facilities on the ground, a poorly designed or operated plant can lead to

severe accidents (Bérest & Brouard, 2003). Therefore, the safety and stability of a rock

salt cavity in an underground storing plant are among the most important criteria in

their geomechanical design process. In order to investigate how reliable the safety of a

rock salt cavity is, there should be some criterion like no-dilation. Exceeding the limit

state of these criteria may cause initiation and growth of cracks in the rock salt, which

leads to failure in the sealing and, consequently, the loss of the product. The other

criterion can be the limitation of volume convergence that prevents excessive closure

without brittle failure. A reliable design of solution mined cavities requires adequate

knowledge about the behaviour of the host rock. While the standard high pressurized

natural gas caverns can be emptied in 10 days and refilled in 30 days or less (Spreckels

& Crotogino, 2002), a CAES may experience up to one cycle per day. Thereupon, the

particular cyclic loading conditions of the renewable energy storage caverns, deduced from

daily or weekly charge/withdrawal cycles should be considered. It can be achieved by an

effective interaction among the experimental investigations, constitutive modelling, and

the numerical analysis. The stability analysis may include data sets of laboratory results of

mechanical testing, numerical modelling, and constitutive models. A conceptual approach

which encompasses the concepts of experimental exploration, constitutive modelling, and

forward simulations, their interdependencies and contributions in the framework of an

iterative study, specific to the solution mined salt cavities is presented by the author in

Mahmoudi, Khaledi, von Blumenthal, König & Schanz (2016).

A consistent picture of the rock salt characteristics may form by gathering different in-

formation sources as laboratory analyses, geotechnical in-situ measurements, and on-site

observations. Nevertheless, laboratory investigations are regarded as the first step of

getting aware of the governing phenomena on the rock salt behaviour. Utilising the

experimental apparatuses, one can observe the physical response of rock salt under dif-

ferent boundary conditions. Due to the cyclic essence of the thermo-mechanical loading

conditions in renewable energy concept, the rock salt around the cavern undergoes com-
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Figure 1.1: Underground salt facilities in (a) Europe (www.kbbnet.de) and (b) USA
(www.eia.gov) and (c) China (www.cedigaz.org)
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Figure 1.2: The share of different resources in the energy production in Germany (data
obtained from AGEB (2016), www.cleanenergywire.org)

plicated stress conditions rather than what are conventionally applied in the geotechnical

laboratory tests. Although, numerous experimental investigations were conducted on

the monotonous loaded rock salt (Cristescu & Hunsche (1998) comprehensively reviewed

them), the experimental evidence for describing constitutive rock salt behaviour under

cyclic mechanical and thermal loading are rare in the literature. Rock salt behaviour un-

der cyclic mechanical loading was investigated e.g. by Fuenkajorn & Phueakphum (2010),

Liang et al. (2012), Guo et al. (2012) and Liu et al. (2014) for uniaxial stress condition.

Thermal effects were not considered in the aforementioned experimental set-ups. Further

studies, applying triaxial stress conditions and various complex stress paths on rock salt,

were executed among others by Bauer et al. (2011), Düsterloh et al. (2013), Ma et al.

(2013) and Roberts, Buchholz, Mellegard & Düsterloh (2015). Although no cyclic thermal

loads were applied, the temperature was considered by means of isothermal conditions at

different temperatures in some of these studies. The concept of an experimental setup

that can apply cyclic thermo-mechanical loading is proposed in Mahmoudi, Khaledi, von

Blumenthal, König & Schanz (2016). Nevertheless, the imposed loads are periodically

changing during the excavation and operation phase of a storage cavity changes in tem-

perature as well as in mechanical stress. The host rock encounters various stress states

along caverns wall due to different reasons such as geometry or overburden. In this regard,

a finite element simulation of a rock salt cavern, employing known constitutive laws, is

conducted to estimate the accurate boundary conditions and loading paths in the experi-
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mental configuration. The stress path for most critical point around the cavern obtained

from simulation is simplified in a way that it takes into account the main characteristics

of the loading (e.g. extension or compression, minimum and maximum loadings and tem-

perature). The simplified stress path may be then used as a reference for experimental

control parameters such as confining pressure, axial load and thermal loading. A prelim-

inary study in this framework was conducted in von Blumenthal et al. (2016) to provide

a more precise insight into stress evolution at critical points in the vicinity of a rock salt

cavern.

However, the computational analysis is primarily based on the governed relations between

the physical properties of the rock salt, which is usually expressed through a constitutive

model. A comprehensive constitutive law for evaluating the behaviour of rock salt un-

der long-term cyclic loading should consider the elasto-viscoplasticity features, as well as

creep behaviour. Also, it has to be able to formulate and predict the dilatancy behaviour

and considering thermal effects. It should be stated that based on the proposed iterative

concept, the introduced sophisticated constitutive model will be calibrated further using

experimental measurements. The calibrated material model is an appropriate basis for

the assessment and approval of the stability of an underground repository by the compu-

tational model introduced in advance. The concept is visualised in Fig. 1.3. It also worth

to mention that the proposed concept is applicable to every other investigation with the

minor possibility to access to the real measurements.

Generally, the natural variability of the rock salt in the field, measurement errors, difficul-

ties in running in-situ experiments, and lack of adequate experimental set up for conduct-

ing full-scale tests may result in significant levels of uncertainties (Einstein & Baecher,

1983). Therefore, utilising probabilistic and reliability-based analysis approaches devel-

oped in Tang et al. (1976), Wang (2011), Mollon et al. (2013) and Phoon & Ching (2014)

is a necessity. Due to the fact that the uncertainties of the rock medium properties are

unavoidable, a reliable design procedure can not rely merely on the deterministic ap-

proaches. Thereupon, in addition to the above-mentioned iterative process to provide

an adequately accurate computational model, the stochastic analysis approaches should

be utilised as well, to reach a reliable design. In this thesis, the probabilistic analyses

are utilised, as substantial tools to describe the associated uncertainties and evaluate the

impacts of their propagation. In this context, the constitutive parameters are represented

as random variables with predefined statistical measures. The effect of the uncertainties

in the input parameters on the system responses is inquired by carrying out the global

sensitivity analysis. After determining the governing parameters, their relevant uncertain-

ties are quantified and the failure probability of the system considering different failure
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criteria is evaluated. The failure probability in the system is investigated using classical

Monte-Carlo simulation methods and a more sophisticated methodologies as subset sim-

ulation. Also, the reliability-based design approach is conducted to determine the design

parameters considering safety issues. Last but not least, as a vigorous statistical tool,

random field discretization is utilised to describe the spatial variability of the excavation

medium and links it to the reliability analysis concept. In this order, the Karhunen-Loève

expansion has been introduced to generate the random field and the subset simulation

methodology was utilised to estimate the reliability measures.

1.2 Computational model

The computational analysis of a rock salt cavity can be divided into two main categories:

i) physical modelling (constitutive models) and ii) numerical simulation. Urai & Spiers

(2007) defined the rock salt as a polycrystalline material consisting of grains of halite with

small amount of impurities. Under the influence of the applied thermo-mechanical loads,

rock salt behaves in different ways in the stress space. According to the experimental

investigations conducted by several researchers, a boundary in the stress space known as

dilatancy boundary separates the ductile behaviour of rock salt from the brittle response;

(see Hunsche & Hampel (1999), Cristescu (1993), Günther & Salzer (2007), Schulze et al.

(2001), Hampel & Schulze (2007) and Alkan et al. (2007)). When the stress state is

below the dilatancy boundary, a time-dependent ductile deformation without any visible

macroscopic fracture is observed. This time-dependent behaviour is highly affected by

the magnitude of the applied load as well as the environmental factors like temperature.

In case that the stress state exceeds the dilatancy boundary, the micro-cracking, inter-

granular slip as well as crystal plasticity occur (Hunsche & Hampel, 1999). Thus, the

irreversible volumetric strain increases due to the opening of micro-cracks, and other

relevant factors such as damage, permeability increase and long-term failure take place in

this zone. To take into account the above-mentioned mechanical properties of rock salt,

different constitutive models have been developed (Cristescu & Hunsche, 1998; Olivella &

Gens, 2002; Hou, 2003; Minkley & Muehlbauer, 2007; Ma et al., 2012). In this thesis three

well-established rock salt constitutive models are employed, namely LUBBY2, BGRa and

Desai elasto-viscoplastic model. Moreover, the latter one is combined with the material

model of LUBBY2 to develop an elasto-viscoplastic creep model.

In order to simulate the behaviour of a rock salt cavity under realistic imposed load con-

ditions, numerical methods e.g., finite difference and finite elements have been widely
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Figure 1.3: The applied iterative approach

employed in previous studies. For examples, a series of finite element analyses that sim-

ulate hypothetical natural gas storage caverns were performed and reported by DeVries

et al. (2003) to illustrate the cavern responses under a wide range of conditions that are

expected to exist in the Appalachian Basin, USA. Heusermann et al. (2003) performed a

finite element study based on the LUBBY2 constitutive model to investigate two types

of design proof, namely stability and usability. Moghadam et al. (2015) conducted a

series of numerical analyses to investigate the influence of the cavern geometry and non-

salt interbeds on the performance of underground storage caverns excavated in rock salt,

considering an elasto-viscoplastic constitutive model. The stability of horizontal caverns

mined in thin-bedded rock salt formations, considering different geometry and boundary

conditions, was examined by Xing et al. (2015) using finite difference method. Wang

et al. (2015) verified a time-dependent prediction model of the subsidence above storage

caverns in rock salt, using a finite difference method analysis. In this thesis, different

finite element simulations are carried out on to investigate various aspects in the storage

cavern’s response.

1.3 Non-deterministic analysis

The uncertainty in the behaviour of any system originates from the accuracies in deter-

mining the value of those parameters which provide the strength of the structure as well

as the lack of certainty in the structure demands.
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In general, the random characteristics of the imposed loads and boundary conditions of a

structure can be reasonably estimated. In the case of utilising quality-controlled materials

like steel or concrete, the associated uncertainties into the structural strength, which is

mainly dominated by the material parameters, are relatively small and known as well.

There is a well-established database of the features of quality-controlled materials, which

can be considered as a priori knowledge to estimate the mean value of the parameters.

Due to their practically uniform properties, which is warranted during the production

process, performing the representative laboratory experiments on a few number of given

samples can obtain the mean parameter’s value of such substances. On the other hand, the

strength parameters of geomaterials like rock and soil or even their type may noticeably

differ even in a medium size construction site. Hence, gathering a comprehensive database

of all the rock soil types around the world is mostly infeasible. In addition to that, due

to the natural origin of the geomaterials, their strength parameters are dealing with an

inherent randomness, and the spatial randomness is a significant source of uncertainty

in such materials. Therefore, the variance of the strength parameters in geomaterials is

relatively high, and running the reliability analysis is a primary requirement for every

geotechnical structure.

It should be noted that among the other factors, the imposed loading conditions, i.e.,

minimum and maximum pressure, minimum and maximum temperature, and the allow-

able rate of charge and discharge the gas can be regarded as uncertain design variables.

These parameters may vary due to the imperfections in the operating and monitoring in-

struments, unmeasured heat exchange between the stored product and host rock medium

and transmission pipeline during the injection or withdrawal. Hence, the conventional

deterministic analyses cannot adequately predict the realistic behaviour of the rock salt

cavities, while they neglect the great extents of involving uncertainties. Accordingly, this

study utilised the probabilistic analyses and design methodologies to consider the impre-

cision and their influence on the system output to develop a robust and stable design.

However, this study focuses on the effect of the mechanical properties of the rock salt on

its response as a geological host rock. Each numerical simulation is associated with uncer-

tainties that can be due to aleatoric (statistical) and epistemic (systematic) uncertainties

(Kennedy & O’Hagan, 2001).

Hartford & Baecher (2004) presented the following taxonomy for the uncertainties:

• Aleatory uncertainty which represents the randomness of nature in the gained

results from experimental studies. The aleatory uncertainty can not be omitted but
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approximated using mathematical models. The temporal and spatial variation of

geomaterial properties are examples for this class of variabilities.

• Epistemic or knowledge uncertainty is attributed to the lack of available knowl-

edge or understanding about the process or the physical phenomena. The amount of

this type of uncertainties may be decreased by the adequate investigations, measure-

ments and exploration plans. In geotechnical applications the epistemic uncertainty

includes (Baecher & Christian, 2005): i) Parameter uncertainty, which is due

to the errors of parameter identification process. Besides measurement and cali-

brating errors, lack of the conducted in-situ observations and laboratory tests may

cause such uncertainties. ii) Model uncertainty, it originates mainly from the

lack of available knowledge or facilities to represent and simulate the real physical

behaviour of the investigated problem.

Additional types of uncertainties in the field of geotechnical engineering are introduced

by Baecher & Christian (2005). These are related to operational uncertainties, which

include construction, deterioration in the condition, and maintenance uncertainties, and

decision uncertainties considering the economic, social and timing issues. However, this

dissertation does not consider these matters neither in the rock salt behaviour predictions

obtained from numerical simulations nor in the probabilistic analyses. Fig. 1.4 depicts

different categories of the uncertainties, which can be considered in a reliability analysis

of a geotechnical problem.

In the numerical simulation of a solution-mined cavity, the epistemic uncertainties may

result from the associated variability in the experimental investigation, the governed con-

stitutive model, input factors (e.g., geometrical characteristics, thermo-mechanical prop-

erties), and the numerical approximations.

Besides the spatial variability of rock salt properties which is considered as aleatoric un-

certainty, the small amount of investigated undisturbed rock salt specimens compared to

the huge volume of rock salt will be affected during the construction and operation phases

as well as error measurements are main origins of uncertainties. Also, the accessibility

to the adequate site exploration may be restricted to a few boreholes, in this particular

structure which is extended vertically downward more than the hundred meters from the

ground level, compared to the common construction sites. Furthermore, the complex ge-

ometry which may be created by the solution mining is also taking into consideration as

a source of uncertainty in the framework of numerical model approximation, because in

the most cases of numerical simulation a simplified geometry is regarded.
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Figure 1.4: Categories of uncertainty involved in the reliability analysis of a geotechnical
problem (adjusted from Hartford & Baecher (2004))

This thesis investigates the impact of the input parameters uncertainties on the failure

probability of the underground rock salt storage. The input factors which are principally

related to the thermo-mechanical properties of the rock salt are subject to different sources

of uncertainties resulting from aleatory and epistemic sources. The uncertain material

properties are customarily defined as random variables described by the expected value

and standard deviation and a probability density function as well. These measures are

driven by the existing data set about the mechanical properties of rock salt formation

(Ratigan & Hannum, 1980; Hansen & Carter, 1983; Van Sambeek et al., 1993; Sane et al.,

2008; Guo et al., 2012; Ma et al., 2013).

In the first step, the variability of the related input factors in a rock salt cavity, and their

impacts on the system behaviour must be investigated. This is achieved by conducting

a sensitivity analysis which determines the most effective parameters in the output vari-

ability as well as the most inefficient ones. Afterwards, the corresponding uncertainties

in the most relevant input variables may reduce by utilising the parameter identification

and optimisation methods. Moreover, identifying the most informative measurement ar-

rangement to obtain input parameters in the framework of optimal experimental design

can supplement the deterministic approaches. Nevertheless, some amount of uncertain-

ties which are most related to the mechanical properties of the excavated rock salt are
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inevitable, therefore using the reliability design approaches is substantial to consider the

uncertainties and their probable consequences on the system output. The results of prob-

abilistic analyses will be accurate when the knowledge about the variability amounts and

measures of the input factor were precise, in such case, the reliability-based design is

utilised with least cost objective constrained with a minimum reliability index require-

ment. Meanwhile, the variability of geotechnical parameters due to the lack of undis-

turbed given rock samples, in-situ measurements, laboratory investigations, and probably

measurement errors is large (Phoon & Kulhawy, 1999). Thus the statistical distribution

may be either overestimated or underestimated which may cause uneconomical or unsafe

design, respectively. The approach of robustness in the design without eliminating the

sources of uncertainty is developed to overcome this issue (Juang & Wang, 2013).

The employed supportive tools to run the mentioned analyses are introduced in the fol-

lowing section in brief.

1.4 Statistical Tools

1.4.1 Sensitivity analysis

A large number of input factors involved in a sophisticated computational model is a

big challenge in the concept of probabilistic analyses because exploring all of the uncer-

tain variables exponentially influences the computational effort of conducting probabilistic

techniques. Utilising sensitivity analysis techniques to determine the key factors which

govern the system responses, can address this issue. Afterwards, more investigation and

exploration merely about the key input factors may be conducted to reduce the propaga-

tion of variability in the system output. This facilitates the probabilistic analysis since it

may reduce the computational time, drastically. Moreover, sensitivity analysis determines

the most irrelevant input parameters that allows one to neglect their variation (i.e., fixing)

in the further analyses and reduce the corresponding computational effort, consequently.

The sensitivity analysis has been widely utilised in geotechnical engineering problems (for

instance, see Homma & Saltelli (1996), Schanz et al. (2006), Hamm et al. (2006), Knabe

et al. (2012), Mollon et al. (2013), Long (2014) and Miro et al. (2014)).

Sensitivity analysis techniques are divided into two main categories, local and global. The

derivative based local sensitivity analyses methodologies evaluate the local impacts of the

input factors on the system outputs. The local term indicates that all derivatives are

taken at a base point in the input space while the global approaches explore the entire
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parameter space of each variable to evaluate its effects on the outputs. Using the global

sensitivity approaches make the identification of interactions between the input param-

eters in non-linear models feasible. Nevertheless, a global sensitivity analysis usually

requires much more amount of computational evaluations compared to the local method-

ology. The methods for sensitivity and uncertainty analysis are based on either statistical

or deterministic procedures. Although, the statistical methods can be utilised by both

local and global analyses methods, the local analysis mostly employs the deterministic

methods (Cacuci, 2003). While a comprehensive computational model of an underground

storage system, probably includes non-linearity, the global sensitivity analyses approaches

are conducted in this study. In this study global sensitivity analysis is considered as the

first step in probabilistic analysis dealing with its complex computational model including

a multitude variables.

This thesis introduced different well-known global sensitivity analysis methodologies,

namely random balance design, Sobol’/Saltelli, and elementary effect. The first two

methods are classified as the variance-based techniques and the last one is considered

as a screening method. The variance-based methods, as a general variance decomposition

scheme, investigate and quantify how the variance of inputs contribute to the variance of

the model output. The idea of the variance-based method in global sensitivity analysis

was developed by Sobol’ (1990). Saltelli et al. (2008) later modified it in the concept

of computational burden. Elementary effect (a.k.a. one-at-a-time or Morris) method

(Morris, 1991) as a screening sensitivity analysis methodology originated from the local

sensitivity analysis method. In this approach, the number of required model evaluations

are considerably less than what is needed in the variance-based method. Thus, when the

number of input parameters is very large, this methodology may be applied, with con-

siderably less computational burden, to identify which of input parameters can be fixed

without any major effect on the important characteristic.

This dissertation presents the obtained results of conducting the three mentioned global

sensitivity methods on the corresponding constitutive variables in a rock salt cavern nu-

merical analysis.

1.4.2 Metamodel

The execution time of a comprehensive numerical model of a rock salt cavity, considering

excavation and operation phases is relatively high. Conducting the sensitivity analysis

and the probabilistic analyses generally requires hundreds of model evaluations which

make these analyses computationally expensive or even infeasible. Numerous statistical
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and probabilistic tools (regression, smoothing, statistical learning, Monte Carlo, etc.) aim

at determining the model input variables which mostly contribute to an interest quantity

depending on model output.

In general, a metamodel, is an analytical model that substitute the original simulation

with sufficient accuracy and evaluates the behaviour of a multivariate complex system

while it is computationally inexpensive and plausible. All metamodelling techniques con-

sist of running the original but computationally expensive simulation on a set of samples

and using the gained information to predict the result of conducting the simulation at

other points in the parameters’ space. Depending on the structure of input parameter

set and system behaviour, several approximation techniques are introduced (e.g., see Lan-

caster & Salkauskas (1981); Powell (1987); Forrester et al. (2008); Bolzon & Buljak (2011);

Buljak (2012)). In this dissertation, Proper Orthogonal Decomposition (POD) combined

with Radial Basis Functions (RBF) is employed in the sensitivity analysis of a rock salt

cavern to evaluate the corresponding system responses. This technique is proposed by

Buljak (2010), for more details about the approach and its implementation process see

Khaledi et al. (2014).

1.4.3 Reliability analysis

In order to assess the effects of uncertainties on system performance, the designer com-

monly use a technique that yields an approximation to the true value of the reliability

index and the probability of failure (Baecher & Christian, 2005). In this regard, there are

several methods, involving different computational effort, and they may provide different

levels of accuracy. Among the others, the Monte Carlo simulation-based methods as crude

Monte Carlo and subset simulation are employed in this thesis.

• Monte Carlo simulation

In this conceptually simple approach, a large number sets of randomly generated

values for the uncertain parameters are created and the corresponding system re-

sponse for each set is evaluated. If the amount of imposed loads does not exceed the

obtained strength value corresponding to the randomly generated set of parameter,

the system is regarded as safe and vice versa. Such a comparison can be formulated

through a performance function. The statistics of the resulting set of performance

function’s values can be presented as either the failure probability or the reliability

likelihood. A large set of input samples and model evaluations are needed in the

crude Monte Carlo method to obtain adequate accuracy. The increasing expecta-

tion on the reliable performance of the modern engineering systems enhances their
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complexity. They are supposed to be designed in a way that their failure be a rare

event, but this makes its assessment by crude Monte Carlo method computation-

ally prohibitive. Therefore, the computational effort can be reduced significantly

by employing more advanced sampling methods as Markov chains as it proposed in

subset simulation.

• Subset simulation

The idea behind subset simulation is quite simple and makes use of fundamental

probability logic, namely, conditional probability. The probability of a rare event is

equal to the probability of a not-so-rare event multiplied by the probability of the

not-so-rare event happens (Au & Beck, 2001).

In order to conduct subset simulation, a powerful simulation method called Markov

Chain Monte Carlo (MCMC) is utilised. This sampling method allows the efficient

generation of random samples according to an arbitrarily given probability distribu-

tion. The samples are generated as a sequence of a Markov chain. The distribution

of the samples is either equal to the target distribution right from the start or

otherwise converges to it as the Markov chain develops.

1.4.4 Reliability-based design

After calculating the failure probability of the system, the interested level of safety based

on the reliability index (Hasofer & Lind, 1974; Haldar & Mahadevan, 2000; Phoon, 2008)

can be applied to evaluate the value of the design parameters in a manner that ensure

the system safety. The flow work shown in Fig. 1.5 describes the non-deterministic anal-

ysis procedure which is utilised in this thesis. The statistical analysis includes different

methodologies of sensitivity and reliability analyses combined with the metamodel con-

cept.

1.4.5 Random Field

In most engineering problems the material parameters spread over spatial extents but

they are neglected commonly. The analyses mostly assign the mean value of a variable

to the whole medium, while in the case of heterogeneous materials, this may lead to an

unreliable design. The existing scatter in such material can be represented in the design

procedure using the random field concept. Various random field generator algorithms are

available in literature, (see e.g., Baecher & Christian (2005)). In the last chapter of this

thesis, Karhunen-Loève expansion method is applied to generate random field realisations.
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Series expansion methods as Karhunen-Loève, approximate the random field by a finite

sum of products of deterministic spatial functions and random variables. Therefore, the

material properties can be specified as functions of point coordinates.

The inherent randomness of natural materials like rocks and soils causes a wide extent

of spatial distribution in their physical properties. Thereupon, the spatial variability

and consequently the induced uncertainty must be considered in complex geomechanical

problems. In this thesis, the random field method is used in a probabilistic analysis of a

gas storage cavern in the rock salt. Consideration of the spatial variation of mechanical

properties in this particular structure which is extended vertically downward more than a

hundred meters from the ground level is substantial. In this regard, a probabilistic model

is presented to compute the failure probability of a cavern mined in a spatially varying salt

dome. Here, the no-dilatant region around the cavity is regarded as the failure criteria. A

deterministic thermo-mechanical model of the natural gas storage in rock salt is defined

using finite element method. Then, a random field model of material parameters applying

Karhunen-Loève expansion is introduced with spatially varying constitutive parameters

of BGRa creep law (Hunsche & Hampel, 1999). Afterwards, the finite element code is

substituted with a metamodel to execute Monte Carlo stochastic finite element method.

After that, the failure probability calculations are performed for different spatial variabil-

ity scenarios to present the effect of the autocorrelation lengths on the safety measures of

the system against dilation.

1.5 Overview of the dissertation

The structure of this dissertation is organised according to the following chapters: Chap-

ter 1 introduces the thesis through the motivation and background of the subject, intro-

ducing the supportive tools and providing the organisation of the content. Chapter 2

presents a review of the existing computational models to simulate the thermo-mechanical

behaviour of the rock salt. The basic features of different constitutive models, namely

the elasticity, creep, and viscoplasticity of the rock salt are presented. Chapter 3 investi-

gated the behaviour of rock salt under particular geomechanical conditions utilising finite

element simulations. In this regard, different issues as the depth of the cavern and its

geometry and solution mining process are investigated. Moreover, various failure criteria

for ensuring the stability and the integrity of a rock salt cavern are presented.

Chapter 4 introduces various global sensitivity analysis methodologies, namely the re-

gression methods, different variance-based techniques, and a screening method. Moreover,
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it briefly explains metamodelling methodology to substitute the computationally expen-

sive finite element simulations in the further sensitivity and reliability analyses procedures.

Three different sensitivity analysis methods are utilised to assess the relative importance

of the input variables in a computational model of a typical rock salt cavity.

The objectives of Chapter 5 are to define measures of reliability and to examine some

different types of failure. The final section is devoted to the reliability-based design

concept. Chapter 6 presents a case study, where the failure probability of a cavern

mined in a spatially varying salt dome is assessed. No-dilatant region around the cavity

is regarded as the failure criteria. The random field model of constitutive parameters of

the BGRa creep law is generated using Karhunen-Loève expansion.



2 Thermo-Mechanical Behaviour of

Rock Salt

Since the mechanical properties of the rock salt govern the stress-strain response of a

storage cavity, the numerical simulation of such a structure should be based on an appro-

priate constitutive model. During last four decades, tens of different constitutive models

are introduced to simulate the thermo-mechanical behaviour of rock salt through math-

ematical equations. Among the others, one may mention studies of Hansen & Carter

(1983); Olivella et al. (1996); Hou (2003); Hampel & Schulze (2007); Günther (2009);

Ma et al. (2012) (for a brief review see Cristescu & Hunsche (1998)). In the following,

three well established constitutive models in both industrial and research communities

are presented and subsequently applied to study the response of the cavity.

2.1 LUBBY2

The LUBBY2 model is used to describe the time-dependent response of the rock salt

around the cavern under quasi-static geological loading. To model the creep behaviour

of rock salt formation, the LUBBY2 model presented by Heusermann et al. (2003) is a

viscoelastic constitutive model for describing creep behaviour of rock salt. It describes

transient and secondary phases of creep phenomena. Based on this model, the total strain

rate is obtained by

ε̇ij = ε̇elij + ε̇veij , (2.1)

where, ε̇elij, ε̇
ve
ij are the elastic and viscoelastic parts of the total strain rate, respectively.

The equation 2.2 gives the non elastic part of strain rate.

ε̇veij =
3

2

[
1

ηK(q)
(1− εtr

q
GK(q)) +

1

ηM(q)

]
Sij, (2.2)

where, q is the deviatoric stress, and Sij represents deviatoric stress tensor.

19
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εtr shows transient creep strain and GK is Kelvin spring modulus (stress-dependent). η
M

and η
K

are Maxwell viscosity modulus (stress-dependent) and Kelvin dashpot modulus

(stress-dependent), respectively.

Eq. 2.3 shows the stress dependency of material’s creep rate by exponential laws.

GK = G
∗
K
ek1q,

η
M

= η∗
M
emq,

η
K

= η∗
K
ek2q. (2.3)

Fig. 2.1 shows the rheological sketch of this model. The material characteristic of the

dashpots and springs in this model are stress dependent. The constitutive model proper-

ties’ values are usually determined from the results of some creep tests on samples taken

from boreholes. Heusermann et al. (2003) presented a uniaxial multi-stage creep test at

stress levels of 12, 14, and 16 MPa on a rock salt sample (see Fig. 2.2). This uniaxial test is

modelled by CODE-BRIGHT using LUBBY2 model. Firstly, the parameters’ value were

set based on Heusermann et al. (2003) suggested values (represented in Tab. 2.2). Then

the difference between results of laboratory tests and the respective outcomes, obtained

from numerical simulations is minimised employing back analysis approach (Knabe et al.,

2012). The material parameters’ values which are presented in Tab. 2.2 are the optimised

set for fitting experimental and numerical data sets utilising genetic algorithm optimisa-

tion method. Fig. 2.2 shows a comparison of experimental and numerical results in the

case of strain and strain rate. Tab. 2.2 also includes parameter sets which are used by

Hou (2003) for the LUBBY2 material model; these values are obtained for rock salt of the

Asse mine in Germany. By comparing these three data sets, it seems that the identified

values for parameters in this study are in good agreement with the other studies.

E ηM
ηK

GK

σσ

Transient
creep

Steady-state
creep

Elastic
strain

Figure 2.1: Illustration of the LUBBY2 model



2.1 LUBBY2 21

0 20 40 60 80 100 120
10‐4

10‐3

10‐2

10‐1

100

Time (day)

St
ra
in
 (%

)

 

 

Numerical data
Measured data

 = 12 MPa  = 14 MPa  = 16 MPa

(a)

0 20 40 60 80 100 120
10

-6

10
-4

10
-2

10
0

10
2

Time (day)

St
ra

in
 r

at
e 

(1
/d

ay
)

Numerical data

Measured data

 = 12 MPa  = 14 MPa  = 16 MPa

(b)

Figure 2.2: Strain (a) and strain rate (b) curve of rock salt in uniaxial compression test,
(test data obtained from Heusermann et al. (2003))
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Table 2.1: The LUBBY2 constitutive model parameters

Parameter Description Dimension Range

G
∗
K Kelvin spring coefficient MPa [3e5 - 6e5]

η∗M Maxwell viscosity coefficient MPa s [0.5e12 - 2.5e12]
η∗K Kelvin viscosity coefficient MPa s [4e9 - 9e9]

Table 2.2: The considered values for the LUBBY2 parameters in different studies

Parameter Heusermann et al. (2003) Hou (2003) Current study

G∗[MPa] 1.88e08 5.08e05 2.17e05
η∗

M
[MPa s] 1.04e13 1.76e12 5.18e12

η∗
K

[MPa s] 4.30e10 7.72e09 8.30e10
k1[MPa−1] -0.254 -0.191 -0.275
k2[MPa−1] -0.267 -0.168 -0.267
m [MPa−1] -0.327 -0.247 -0.275

2.2 BGRa

BGRa is one of the well-established creep models in the literature, it proposed by Hunsche

& Hampel (1999), and has been used widely in different studies (e.g., Bräuer et al. (2011)

and Müller-Hoeppe et al. (2012). In this constitutive model, the creep induced strain rate

of rock salt is obtained using the following equation:

ε̇crij = A exp

(−Q
RT

)(
σij
σ0

)u
, (2.4)

where A denotes the value of fluidity at a reference temperature; R is the universal

constant of perfect gas ( 8.314 e03 kJ/(mol K)), and T is the absolute temperature (For

more details see Hunsche & Hampel (1999)). In the present study, the induced strain

rate by the temperature change is also considered as an additional strain tensor in the

mechanical model. This quantity is related to the linear thermal expansion coefficient αt

and the temperature changing rate Ṫ :

ε̇thij = αtṪ δij (2.5)

where, δij denotes the Kronecker delta.
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2.3 Elasto-viscoplastic creep model

Here, an elasto-viscoplastic creep model is proposed to describe the time-dependent be-

haviour of rock salt considering dilation and creep behaviour. This constitutive law is

developed based on Perzyna viscoplastic model (Perzyna, 1966) and Maxwell model. The

rheological scheme of the employed material model is demonstrated in Fig. 2.3. Based on

this model, the total strain rate is obtained using the equation

ε̇ij = ε̇elij + ε̇vpij + ε̇crij , (2.6)

where ε̇elij, ε̇
vp
ij and ε̇crij are the elastic, viscoplastic and viscoelastic parts of the total strain

rate, respectively. The elastic strain is obtained using the generalised Hooke’s law. The

viscoplastic component of strain rate is described by utilising an associated flow rule

represented in Eq. 2.7, which has been developed by Desai & Zhang (1987) based on the

viscoplastic model of Perzyna

ε̇vpij = λ

〈
F vp

F vp
0

〉Nf ∂F vp

∂σij
. (2.7)

The proposed yield surface, F vp, which is equal to the potential function depends on

three stress invariants, namely the first stress invariant (I1), the second invariant of the

deviatoric stress (J2), and the Lode’s angle (θ) according to the equations

F vp = J2 −
(
−αIn1 + γI2

1

)
(exp (β1I1)− βcos (3θ))b , (2.8)

θ =
1

3
cos

−1

(
−
√

27J3

2J1.5
2

)
, I1 = −σii, J2 =

1

2
sijsij, J3 = det(sij). (2.9)

Figure 2.3: Illustration of the elasto-viscoplastic creep model
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In the former equations, β, β1 and b determine the variation of the failure boundary with

respect to the change of Lode’s angle θ, which varies from 60◦ at a triaxial compression

to 0◦ at triaxial extension. F vp
0 is a normalising constant with the same dimension as

F vp; here the value is assumed to be equal to one. Nf and λ represent the rate-dependent

behaviour of rock salt. The parameter γ is associated with the slope of the ultimate

yield envelope. α is the hardening parameter which determines the size of the yield

surface. This parameter is a function of the accumulated viscoplastic strain ξ, and its

value decreases by increasing the viscoplastic deformation (Sane et al., 2008). The value

of ξ is represented in Eq. 2.10, where a1 and η are model parameters,

α =
a1

ξη
, ξ =

∫ t

0

√
ε̇vpij : ε̇vpij dt. (2.10)

The dilatancy boundary, which is defined by the beginning of the irreversible volumetric

expansion, entitled as compression/dilatancy (C/D) boundary is mathematically repre-

sented by

Jdil2 =

(
1− 2

n

)
γI2

1 (exp(β1I1)− βcos(3θ))b
{

1 +
bβ1I1exp(β1I1)

n(exp(β1I1)− βcos(3θ))

}
. (2.11)

The C/D boundary is defined by the beginning of the volumetric expansion and is used

to identify the stress state which results in dilatant behaviour. When the stress state

locates above the C/D boundary, the material experiences dilatancy, i.e., an increase

in permeability and development of micro-cracks that may lead to failure. Based on

Eqs. 2.8 and 2.11, the dilatancy and failure boundaries are functions of Lode’s angle. The

dependency of the yield surfaces on Lode’s angle results in different responses during

triaxial compression, shear and extension loading. Therefore, for comparing the stress

paths of the various regions around the cavern independently of Lode’s angle, the scaled

value of the second invariant of the deviatoric stress (
√
Js2) is calculated as

√
Js2 =

√
J2
Jdil2 (60◦)

Jdil2 (θ)
, (2.12)

here
√
Jdil2 (60◦) indicates the distance of dilatancy boundary from the hydrostatic axis

in π-plane (the plane normal to the hydrostatic axis), for compression (θ = 60◦), and√
Jdil2 (θ) measures this distance for the current value of Lode’s angle.
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The third component of the strain rate in Eq. 2.1 describes the steady state creep be-

haviour of the rock salt

ε̇crij =
3

2
[

1

ηM
]sij, (2.13)

where ηM is the viscosity of Maxwell dashpot (stress-dependent). The stress dependency

of this parameter is described exponentially by

ηM = η∗Me
−m0(

√
3J2), (2.14)

where, η∗M and m0 are material parameters. Commonly, the value of the constitutive

model properties is determined from the results of experimental tests on samples taken

from boreholes. Here, triaxial test data reported by Desai & Zhang (1987) is simulated

based on the proposed constitutive law in order to calibrate the constitutive model. This

experiment was carried out to define the stress-strain relation under triaxial compression

loading at a confining pressure equal to σ3 = 3.45 MPa. The tested rock salt specimen in

this experiment was collected from the Salado rock salt formation in New Mexico, USA.

Fig. 2.4 illustrates the comparison between the observed and the predicted behaviour based

on the numerical model in the stress-strain space. An extensive investigation in order to

determine the material parameters of the viscoplastic component of the constitutive model

is previously presented in Khaledi, Mahmoudi, Datcheva & Schanz (2016b). It should be

stated that the value of η∗M is adopted from Hou (2003). The constitutive parameters

utilised to provide the numerical results are presented in Tab. 2.3.

2.4 Compression/Dilation boundary

Shear stress or deviatoric stress which can be induced by different internal pressures and

in-situ stress of rock around the cavities results in creep deformation. If the pressure in

the cavern is too small, the deviatoric stresses in the surrounding salt can lead to dilation

in the rock salt. Salt dilation causes developing of micro-cracks, and volume increases.

Irreversible volume increasing is the sign of exceeding no dilation criteria. C/D boundary

defined by the beginning of volumetric expansion under compressive load, are used to

identify states of stress which result in dilatant behaviour.

Over the years many equations have been developed for the description of no dilatation

criteria; for instance, BGR (Hunsche et al., 2003) criterion which has been established
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Figure 2.4: Triaxial compression test under confining pressure σ3 = 3.45 MPa (test data
from Desai & Zhang (1987))

based on experimental studies is presented in Eq. 2.15.

√
J2 =

bD√
2

(
I1

3

)cD
, (2.15)

where bD = 2.61248 and cD = 0.78093. Also, Eq. 2.16 represents Cristescu C/D line

(Cristescu & Hunsche, 1998) for describing the rock salt behaviour based on some true

triaxial experiments.
√
J2 =

√
3

2

(
f1

(
I1

3

)2

+ f2

(
I1

3

))
. (2.16)

DeVries et al. (2003) and Desai & Zhang (1987) presented their boundaries by Eq. 2.17

and 2.19, respectively.

J2 =
(2− n)γI1

(mβ1exp(β1I1))Fs − n
I1Fs

, (2.17)

here the parameter of Fs is

Fs = (exp(β1I1)− βsin(−3θ))m, (2.18)
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Table 2.3: The description of material parameters

Parameter Dimension Value

Elastic parameter
E MPa 2200
ν [-] 0.27

Viscoplastic parameters

n [-] 3
Nf [-] 3
β [-] 0.995
β1 MPa−1 4.8e-3
b [-] -0.5
λ s−1 0.58e-11
a1 MPa(2− n) 0.4e-4
γ [-] 0.095
η [-] 0.8

Creep parameters η∗M MPa s 1.75e12
m0 MPa−1 0.275

where, γ, β, β1, n, k and m are the constant parameters. θ is Lode’s angle, varies from

+30◦ at triaxial compression to −30◦ at triaxial extension.

√
J2 =

D1I
n
1 + T0√

3cos(θ)−D2sin(θ)
, (2.19)

where, D1 = 0.773, D2 = 0.524, n = 0.693, T0 = 1.95 and θ is Lode’s angle.

DeVries and Desai both presented non-linear compression/dilatancy boundaries consider-

ing the effect of intermediate stress (Lode’s angle) on the dilation limit. C/D boundary

suggested by Desai is introduced in Sec. 2.3. Hence they provide different dilatancy bound-

aries for various zones around the cavern. A comparison of the four C/D boundaries or

criteria is expressed in Fig. 2.5 in the invariant stress plane. Since below these lines, rock

salt experiences no dilatancy, they named as no dilation criterion. As Fig. 2.5 shows var-

ious constitutive models based on different empirical investigations or rheological models

define slightly different C/D boundaries. It should be pointed out that based on many

experimental data in a wide domain around of C/D boundary, carried out by Cristescu

& Hunsche (1998), the irreversible volumetric strains have a negligible variation. They

investigated the width of the domain where εv has a slight variation in the neighbourhood

of the C/D boundary for rock salt. See Fig. 2.6, where the x signs demonstrate the domain

of the volumetric strain variation is smaller than the maximum reached on the boundary.

Hence it could be concluded that C/D boundary can be assumed as a domain not a single

line. Within this thesis, Desai C/D boundary is considered as no dilatation criteria.
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3 Numerical Simulation

3.1 Introduction

In this chapter, the finite element simulation of a typical rock salt cavern is developed,

involving different aspects of excavation and operational phases of a typical rock salt

cavity. The real shape of a cavity cannot be precisely defined before the completion of

the excavation phase. Although, the designer may define the key features of the geometry

as the height, diameter and the required volume, the final shape of the mined cavity can

only be determined using sonar measurements. Also, cavern’s depth is usually dictated

by the elevation and thickness of the bedded salt deposits or the depth of salt dome below

the surface. Within this chapter, an independent investigation is presented to consider

some different scenarios for the location of the casing shoe (see Sec. 3.3).

3.2 Geometry

A real cavern is usually irregular in shape and contains sediments in the bottom, see

Fig. 3.1 and Fig. 3.2, where some real cases are shown. Fig. 3.1 represents the sonar

measurements which have been conducted during different phases of the solution mining

procedure in the cavern TE02 located in the natural gas cavern field of Terssane, the

Valence salt basin France. Different coloured lines determine the cavern’s boundary in

different phases of the solution mining process. However, in the most cases of numeri-

cal simulation, a simplified geometry is assumed (Pudewills, 2007; Nazary et al., 2013;

Wang et al., 2013). In this dissertation also the irregularities in the wall of the cavern

are neglected, and as a synthetic case study, the shape of the cavity after excavation is

idealised by a rounded roof cylinder. A cylinder models the body of the cavern with a

height of 233 m, and a diameter of 75 m. A 15 m flat area in the roof and the bottom are

considered and the corners are assumed to be circular with a 30 m radius. Fig. 3.3 shows

the geometry and boundary conditions of this cavity in details. This cavern provides

around 985,000 m3 volume storage. In-situ and laboratory experimental tests show that

29
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the initial stress state in rock salt formations is isotropic (Heusermann et al., 2002; Bräuer

et al., 2011). The rock salt is an evaporated material and shows slow trends to dissipate

shear stresses over times of several hundred years. Hence its initial stress state should

be different rather than the other rock types. Some measurements on the initial stress

state of rock salt formation have been carried out by BGR Institute on the Gorleben salt

dome, located in the north of Germany. Their observation shows that the primary stress

state increases linearly with depth with the application of density of 2 t/m3. Therefore,

the initial stress value in all directions is assumed to be equal and in proportion to the

depth. Therefore, in the numerical model at far enough distance from the cavern hydro-

static stress state should exist, as well. Also, during the excavation and operation phases,

at far enough distance of the cavern, isotropic stress condition exists. This situation is

considered in the simulation by applying a lateral load increasing linearly with depth

(ph = pv + zγrs) on the outer edge of the rock salt column. The vertical displacement

of the model is restrained at the bottom of the rock column. The non-saline material

above the rock salt formation, i.e. cap rock with a specific weight of γcr = 21 kN/m3 is

simulated as a uniform load at the top of the rock salt column.

The temperature of surrounding host rock changes during the injection and withdrawal

cycles. The fluctuation of temperature imposes thermal expansion and contraction on

the rock salt around the cavern, which causes additional stresses. The rate of creep

deformation is also influenced by the temperature of rock mass that may affect the rate of

cavern closure, subsequently (Bérest et al., 2007). Moreover, the influence of fast cooling

and induced thermal contraction on the minimum principal stresses should be examined

within a thermo-mechanical analysis (Khaledi, Mahmoudi, Datcheva & Schanz, 2016a;

Khaledi, Mahmoudi, König & Schanz, 2016). However, as the main focus of this thesis is

proposing a probabilistic approach to face with such complex application dealing with a

significant amount of uncertainties, and in the sake of simplicity, the thermal interactions

are neglected and the numerical simulation is done at constant ambient temperature

T=298 K. GID software models the salt cavern with the above mentioned simplified

geometry. GID is used as the pre-processor and post-processor of the Code–Bright finite

element solver (Olivella et al., 1996).

3.3 Depth of location

The typical geological profile that cavern could be excavated in is shown in Fig. 3.3a. The

rock mass is idealised by dividing into two homogeneous layers, rock salt and overburden.
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Boucly (1982))
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Cavern’s depth is usually dictated by the elevation and thickness of the bedded salt de-

posits or the depth of salt dome below the surface that can be solution mined. Thereupon,

there are different cavities around the world mined in different depth. Fig. 3.2 shows var-

ious excavated rock salt cavities around the world, whose their depth of locations may

differ from 150 m to 1700 m.

Within this section, three different depths for the location of cavern’s casing shoe (i.e.

the bottom of the casing string, close to the top of cavern’s roof) are assumed 560 m,

800 m and 1250 m. These three depths are referred to hereafter as shallow, mid and deep

caverns, respectively. Same geometry as presented previously in Sec. 3.2 for three caverns

is considered. In this work, a column of domal rock salt, which is shown in Fig. 3.3,

with a length of 800 m and radius of 300 m, is considered. By taking advantage of the

rotational symmetry, the model is transformed into an axisymmetrical numerical model.

The finite element mesh is composed of 1137 quadrilateral elements (see Fig. 3.4). To

simplify the simulation procedure, excavation process is neglected, and it is assumed that

cavern is immediately excavated, but a geostatic analysis was performed in a time step

before loading to establish the initial stress state in the rock salt before excavation. Other

material parameters of rock salt based on LUBBY2 constitutive model are represented

in Tab. 2.2 which have been calculated from an uniaxial creep tests on salt rock samples

from a salt mine located in the north of Germany (Heusermann et al., 2003).

Scaled deformed shape of rock salt formation for mid deep cavern, casing shoe at depth

of 800 m is shown by Fig. 3.5 in comparison with the undeformed shape. It clearly shows

that deformations due to creep behaviour have more value at the bottom half of the cavern

and in the floor of the cavern close to cavern axis as well. This observation corresponds

with more deviatoric stress at these areas which based on Eq. 2.2 has a major effect on

creep strain value. In the sake of determining the minimum operating pressure value, the

state of stress around the cavity is compared with Desai C/D boundary. The stress-state

of two nodes around the cavern one at the mid height of cavern and one at the floor

of the cavity (i.e. Point A and B in Fig. 3.3, respectively) are monitored. These points

experience different intermediate stresses.

As explained in Sec. 2.4, when the stress state locates above the C/D boundary, the ma-

terial experiences dilatancy, an increase in permeability, development of micro cracks and

creep failure. Thereupon, those internal pressure which leads the stress paths in all regions

locating below C/D line (i.e. compressible zone) could be considered as safe scenarios.

Based on Eq. 2.17 the dilatancy and failure boundaries are functions of Lode’s angle, then

for comparing the stress paths of different region around the cavern independent of Lode’s

angle, the second invariant of deviatoric stress is scaled using the Eq.2.12 formulation.
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Figure 3.3: Geometry and boundary condition of the salt cavern model

Figure 3.4: Finite element mesh discretisation
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Undeformed shape

Figure 3.5: Scaled deformed shape of mid deep cavern under 4 MPa internal load

Fig. 3.6 displays the scaled stress path of the wall of cavern in the invariant stress plane,

respectively. As Fig. 3.6 clearly shows the stress paths of node at the wall of shallow

cavern under 4 MPa internal pressure is below the C/D line. Whereas for a deep cavity,

minimum operating pressure equal to 4 MPa leads the stress state of salt formation around

the cavern to dilatant region at the wall and ground of cavity as well. A comparison be-

tween the observed stress paths on the wall of the cavity and at its bottom shows, when

observation point is at the bottom of cavern, minimum allowable internal pressure would

be more critical. For example, consider stress paths at the mid depth under 4 MPa inter-

nal pressure at the cavern’s floor and wall. The wall of cavity under this internal pressure

is in the compressible zone, but the bottom of cavern experiences dilatant behaviour.

Fig. 3.7 represents induced strain under different internal pressure along time for various

depth of cavern. The strain of deep cavern shows higher value in each observation points

compared to other cases. While at the shallow and mid depth caverns more amount of

strain is induced during transient phase, at deep cavity secondary or stationary creep also

has a considerable proportion in strain value. Horizontal and vertical strain at the wall

and the floor of cavern respectively follow similar trend.
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Figure 3.6: Stress path at the point A in Fig. 3.3

Fig. 3.8 shows the variation of deviatoric stress along a horizontal line at the mid height

of cavity. As mentioned before in Sec. 3.2, far from the cavity’s vicinity second invariant

stress is negligible. For instance, the initial stress state of rock salt around the mid

depth cavern does not change considerably farther than 4 times of cavern radius from the

cavern’s wall. The value of deviatoric stress around the cavern’s wall increases for deeper

caverns.

Moreover, variation of the deviatoric stress under various internal loads for the cavern in

the depth of 800 m is presented.

3.4 Excavation simulation

Solution mining process is started by drilling a well into the salt structure, and then,

leaching and withdrawal strings are hung into the cavern from the last cemented cas-

ing string (also called as casing shoe). The storage cavern is leached out from the salt

formation by injecting fresh water at the bottom of the cavity and dissolving the salt.

After the dissolution of salt, the brine is discharged through the withdrawal string to

dissolve the salt in a controlled manner, progressively. The resulting saturated brine can

be transported to a production plant to purify in a brine purification facility. During

the leaching process, the density difference between injecting water and discharging brine

forces circulation. At the end of the leaching process, the cavern is filled with brine that is
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usually replaced by injecting pressurised gas from the top of the cavern during the debrin-

ing phase. The direction of circulation, injection point of raw water and leaching rate are

main parameters which control the shape of the cavern. Later, the injection/withdrawal

cycles commence in order to balance out the consumption demands. Fig. 3.9 schematically

shows the process of the solution mining. In this study, the solution-mining procedure

is simulated by applying the internal pressure to the cavern’s boundary in each step of

excavation. In addition to using initial isotropic stress condition based on the weight of

salt column, a ramp load equal to the initial isotropic pressure of rock salt medium is also

applied to the cavern’s wall to simulate intact rock with no deviatoric stress before the

construction onset. After that, the internal pressure of cavern is gradually decreased to

halmostatic pressure. This process, which starts from the deepest point of the cavern, is

called leaching and is assumed to take place in 780 days. Extracting brine from the cavity

is done by injecting a pressurised gas whose pressure is slightly higher than the weight

of the brine column. Replacing the brine by gas, namely debrining process, is simulated

in this study by increasing the internal pressure of cavern and happens within 264 days.

In the last phase before the operation, the internal pressure in the cavity is adjusted to

be equal to the maximum operating pressure (the first step of the operation phase). The

explained process of simulating the solution mining consists of leaching, debrining and the

first step of the operation, hereafter will be noted as stepwise excavation. In this study,

stepwise excavation is assumed to take place in a total time duration about three and a

half years.
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To simplify the numerical model, the entire excavation and debrining process can be sim-

ulated by changing the internal pressure of cavern in one time step with the same total

duration as the stepwise excavation. Therefore, the geostatic stress is reduced gradually

to the maximum internal pressure of the cavern within the same time interval as men-

tioned above for the stepwise approach. Fig. 3.10 illustrates the schematic loading pattern

imposed to the cavern’s boundary during the excavation and the cyclic loading operation

phases. The solid line shows the pressure variation within the stepwise excavation ap-

proach while dashed line shows its changes during the simplified simulation strategy. In

Sec. 3.5, the results of a comparative study between these two approaches to model the

excavation procedure is given.

3.5 Stress-strain status

Fig. 3.11a shows a typical geological profile of a rock salt strata where a storage cavern

may be excavated. As previously mentioned, the excavation procedure of a rock salt

cavern is simulated by two different simulation strategies, the first one models the whole

phases stepwise, and a second approach simulates the excavation procedure in one step in

a simplified way. The simplified procedure can be justified by the following statements:

i) Figs. 3.12a and 3.12b show that the stress path related to the leaching, the debrining

and the beginning part of the first step of the operation is located inside the initial yield

surface, thereupon in these steps, the viscoplastic component of Eq. 2.6 equals to zero.

Based on that, observed deformations are due to elastic and viscoelastic behaviour (i.e.,

steady state creep). ii) Fig. 3.13a displays the stress paths of the two different methods

of modelling the excavation process. It is observed that both paths experience a different

stress state during the excavation procedure, but they finally reach the same point in

the (I1,
√
J2) plane. Also, the excavation-induced horizontal displacement of N3 on the

cavern’s wall is drawn in Fig. 3.13b for both simulation methods. As mentioned before,

the main part of the excavation-induced strain is due to elasticity and creep, which is a

time-dependent behaviour. Therefore, since the same time interval is considered for both

processes, the computed values of the horizontal displacement as well as the stress state

at N3 show in both modelling methods similar results. One can conclude that simplifying

the numerical analysis by modelling the whole excavation phase in one time step, when

its responses during operation are addressed, makes no remarkable difference in the initial

system response. Thereupon, the simplified simulation strategy is applied. At the end of

the excavation phase, two different operation protocols are investigated: (i) cyclic loading

and (ii) long-term loading. In the first protocol, the internal pressure of the cavity is
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Figure 3.9: Solution-mining process (www.cadincadout.com)

set to 10 MPa, after that it is decreased to 7 MPa during 12 hours, and then it is kept

constant for 12 hours. The cyclic loading simulation is followed by raising the internal

pressure gradually to 10 MPa within 12 hours time interval. It is assumed that the salt

cavern has no leakage or discharge during different phases.

Furthermore, for observing the volume convergence of the rock salt cavern induced by

creep behaviour of rock salt, a long-term loading protocol is considered. After the com-

pletion of the excavation phase, the internal pressure is kept constant for six months in

minimum level. This loading protocol is used for evaluating the reliability of the cavern

against the volume loss in Chapter. 5.

Figs. 3.12a and 3.12b show the stress path of two nodes in the wall and the bottom region

around the cavern, namely N3 and N5 in Fig. 3.11, respectively. Moreover, C/D line,

the failure boundary and the initial yield surface are drawn in (I1,
√
J2) plane. In the

following, contour plots of the horizontal strain and the deviatoric stress around the cavern

under 7 MPa internal pressure at the end of the 10th cycle are presented in Figs. 3.14a and

3.14b, respectively.

3.6 Stability of the cavity

The integrity and functionality of the rock salt cavern is a fundamental prerequisite in

its design and are considered as the safety measures of such a repository. In general,

the performance of the storage caverns is carefully monitored to prevent any environmen-

tal and financial risks, based on authorisation demands. There are follow-up procedures
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Figure 3.10: The changes of the internal pressure of the cavern during excavation and
cyclic operation phases

to ascertain a sustainable storage volume of such a cavity, including bottom pressure

and temperature logging, cavern thermodynamic modelling from well-head measurement.

Some of the continuous or periodic monitoring procedures as seismic monitoring, subsi-

dence survey, cavern bottom sounding and sonar survey are planned to examine the cavern

stability. The integrity of the solution mined storage can be tested by corrosion moni-

toring and annular tubing pressure monitoring observations. Tab. 3.1 presents a standard

monitoring program, determining the objectives of each observation for a geomethane

storage cavity. Also, the proper frequency for periodic operations is suggested. The in-

tact rock salt under isotropic stress conditions has no connected pore space (Bräuer et al.,

2011), but within excavation procedure, as well as during operation phase, some micro-

scopic fractures may propagate due to the dilatancy and tensile stresses. When a deep

fracture develops, especially at the roof of the cavern, the integrity losses and product

leakage occurs. Within a numerical design, the stability and serviceability of the rock salt

cavity can be investigated by considering the following criteria,

• no-dilatancy,

• no-tensile region,

• no-damage region,

• limited volume loss,

• limited subsidence.

The mentioned criteria have been utilised in several research projects and case studies in

order to ascertain the stability and serviceability of a rock salt cavern either in design or
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Figure 3.11: Geometry and boundary condition of the salt cavern model

operational phase. For instance, Nieland & Ratingen (2006) investigated the structural

integrity of two natural gas storage caverns located in a Gulf Coast salt dome, considering

limited volume loss, no tensile zone and no dilation zone and recommended a safe gas stor-

age and withdrawal rates and minimum gas pressure. Also, a rock mechanical calculations

performed by Jafari et al. (2011) to study the effects of the seasonal and micro-cycling

operation modes on different failure criteria, namely, no-dilation, no-tension, no-damage

and limited volume convergence. For more examples, see Bérest et al. (2008); Bérest

(2011); Lux (2013), and Wang et al. (2016).

3.6.1 No- dilatancy criterion

The rock salt under high deviatoric stress undergoes dilatancy, and the permeability and

acoustic emission increase due to the initiation and growth of the micro-cracks. Therefore,

the dilatant zone in the rock surrounding the cavern should be avoided, to accomplish

this no-dilation criterion is defined. No-dilation criteria employed the C/D boundary

introduced in Sec. 2.4 as the limit state. In addition, the second variant of the stress state

of the surrounding rock salt is evaluated to define a quantity as below to identify the

location of the stress state to the dilatancy boundary. For this reason, a quantity DF is

defined to identify the location of the stress state relatives to the dilatancy boundary as
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Figure 3.12: Stress path in I1 −
√
Js2 plane at (a) the cavern wall and (b) the cavern’s

bottom
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Figure 3.14: Contour plots of (a) deviatoric stress (
√
J2) and (b) the horizontal strain at

the end of cyclic loading (simplified loading)

follows:

DF =

√
J2√
Jdil2

, (3.1)

here,
√
Jdil2 indicates the distance of the dilatancy boundary from the isotropic condition

in the π-plane. When DF ≥ 1, it means that the present stress state of the cavern

lies above the C/D line, and, subsequently, the corresponding areas around the cavity

experience dilatancy, which increase the permeability. In this dissertation, the DF is

used in the probabilistic study in Chapter 5 as a pre-failure criterion to determine the

minimum allowable pressure of the cavern. Although, violating the criterion in a node

does not mean that the whole zone will be prone to collapse. For the sake of simplicity

and because the walls of the cavity are considered smooth, we assumed that the defined

nodes in Fig. 3.11 reflect the response of the zone, where they located. Figs. 3.15a and

3.15b show the contour plot of DF around the cavern when the internal pressure is fixed

to 7 MPa and 4 MPa, respectively. Figures clearly illustrate that, decreasing internal

pressure, causes dilatant regions around the cavity (DF > 1).

It is worth to mention that the maximum value of the deviatoric stress in the cavern’s

boundary is mainly affected by applying the minimum internal pressure (Mahmoudi et al.,

2015a). Thereupon, when the internal pressure drops down drastically, the stress-state

moves above the dilatancy boundary. The minimum storage pressure corresponds to

high deviatoric stresses which may exceed the dilatancy boundary and leads microscopic
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Table 3.1: Monitoring plan for a rock salt cavity storage (adjusted from Jafari et al.
(2014))

Cavern Well Gas

Technique stability integrity inventory Frequency

Seismic monitoring X Continuous

Subsidence survey X 5 years

Bottom depth sounding X 3 years

Cathodic protection X Continuous

Annuals pressure monitoring X Continuous

Sonar survey X X 10 years

Well-head pressure monitoring X X Continuous

Downhole temperature measurement X <3 years
Gas metering X Continuous

cracks in the host rock. Hence, determining an appropriate value for the minimum storage

pressure is substantial in the concept of stability of this structure.

3.6.2 No-tension criterion

In a gas storage cavity, specifically in the CAES ones, where the amplitude of charge-

withdrawal cycles is high, rapid pressurisation and thermal stresses due to the cooling may

cause tension stress state in some regions around the cavern. Since the tensile strength

of the rock salt is very low (i.e., 1.8 MPa (Cristescu & Hunsche, 1998)), the integrity of

the rock salt around the cavern may be imperilled if tensile zones form in the cavern’s

vicinity (Berést, Djizanne, Brouard & Hévin, 2013). Hence, the influence of fast cooling

and induced thermal contraction on the minimum principal stresses should be examined

within a thermo-mechanical analysis.

Moreover, the effective tensile stress may be developed when the internal cavern pressure

exceeds the minimum comprehensive stress in each zone around the cavern (Brouard et al.,

2007; Bérest, 2011; Djizanne et al., 2012). Thereupon, in the all international experience

in cavern design, the maximum internal pressure is set between 80 and 90 % of the primary

stress at the cavern roof (Lux et al., 2002; Hou et al., 2010; Xing et al., 2015).

3.6.3 No-damage criterion

The rock failure around the cavern does not propagate to the surface unless the rock salt

above the cavern’s roof elevation is breached (Allen et al., 1982). Such a case may happen

after a network of micro-cracks which are built up due to the dilatancy, are connected.
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Figure 3.15: Contour plot of DF under the minimum internal pressure (a) Pi =7 MPa and
(b) Pi = 4 MPa

There are different approaches to describe and formulate the damage in geomaterials. For

instance, Khaledi, Mahmoudi, Datcheva & Schanz (2016b) used an energy-based quantity

defined to quantify the energy of micro-cracking. When the released energy due to micro-

cracking reaches to a threshold value, the material failure occurs. In this regard, one may

use the long-term failure ratio (LFR) introduced by Cristescu & Gioda (1994) to evaluate

the micro-cracking and damage propagation around the cavern. The LFR is defined as

the ratio of released volumetric inelastic work per unit volume (wvol) due to the dilatancy

of rock salt, to a threshold value (wf ).

LFR =
wvol
wf

, (3.2)

here wf is the maximum released energy in which the material failure takes place. In

the case that LFR becomes greater than zero, the damage will initiate to progress. As

previously mentioned, the surrounding rock salt under low internal pressure exhibits more

tendency to dilatant, hence damage is also more likely to occur under low-pressure loading

scenarios.

Based on the conducted analyses by Khaledi, Mahmoudi, Datcheva & Schanz (2016b),

when cavern is operated under very low pressure loading scenarios, LFR raises by in-

creasing the number of load cycles. In this thesis, the damage is not surveyed.
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3.6.4 Limited volume convergence criterion

In the concept of the geomechanical design of an underground rock salt storage, in addition

to the mechanical stability, its serviceability also should be assured. The serviceability

of a rock salt cavern corresponds to fulfilling the requirements of the storage plant, e.g.,

the prescribed internal pressure, volume and temperature. In every rock salt cavern,

the deviatoric stress due to the difference between the geostatic pressure and the cavity

internal pressure, forces creep into the cavern as soon as the leaching process begins.

The extent of creep in the rock salt is relatively high, compared to other common host

rocks (Cristescu & Hunsche, 1998), therefore, creep induced deformations may cause large

amounts of volume convergence. Consequently, the required storage space for running

the turbine generators can not be provided. Evidences of large losses of storage space

were represented by Thomas & Gehle (2000) and Bérest & Brouard (2003). Hereupon,

the deformation of the cavity in the long term should be evaluated and restricted in a

manner that may not endanger the serviceability of the storage plant. The amount of

volume convergence increases drastically when the internal pressure of the cavity keeps

low for a long period. Displacement contours of surrounding rock salt under long-term

loading protocol under different internal load pressures are shown in Fig. 3.16a and 3.16b,

respectively. As stated previously, decreasing internal pressure induces more deviatoric

stress, which the creep strain is affected by, therefore, reducing internal pressure may

encounter the cavity with extreme volume convergence values.

3.6.5 Limited subsidence criterion

Compared to the conventional underground structures, the ground settlement is markedly

less in rock salt cavities. In other words, no significant damage at the ground level resulting

from the convergence of deep caverns has been experienced. For instance, Ratigan & Yogt

(1993) reported results of a survey on the ground level settlement rates on an LPG storage

plant in Mont Belvieu, Texas, in which the average subsidence at 124 storage cavities in

the site was 2.64 ± 1.02 cm. Also, at the Tersanne site, in contrary to the relatively

large cavern convergence, the amount of subsidence was negligible. The settlement rate

was reported approximately 1 cm per year in this salt formation (Nguyen et al., 1993).

However, the ground subsidence in shallow rock salt cavities is relatively higher. Besides

the depth of cavern, other factors as internal pressure, running time, excavation rate,

etc. can effect on the settlement extent. Bérest et al. (2008) studied 1873 collapse of

the Varangeville salt mine, France which caused 3.3 m subside in the ground level and

proposed the occurrence of massive subsidence as an indicator for collapses. Since the
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Figure 3.16: Contour plot of displacement around the cavern under the minimum internal
pressure (a) Pi = 7 MPa and (b) Pi = 4 MPa in long-term loading protocol

massive ground subsidence may cause sinkholes and surface failure, the value of subsidence

above the opening should be evaluated, attentively (Jafari et al., 2008).

All above-mentioned failure criteria can be investigated along a reliability analysis. In

this thesis, the no dilation and limited volume convergence are surveyed in Chapter 5.

3.7 Summary and conclusion

Analogous to most geotechnical engineering concepts, where the numerical methods are

widely used, here the behaviour of rock salt under particular geomechanical conditions is

numerically analysed. To do this, the finite element method, simulating excavation and

different operation scenarios, is employed to evaluate the behaviour of a typical rock salt

cavern under different loading protocols. Moreover, this chapter presented a numerical

investigation on the mechanical behaviour of rock salt in distinct excavation depths. A

typical geometry for caverns with three various locating depth has been analysed by a

finite element code. To identify the minimum allowable internal pressure, considering no

dilatation criteria, stress state of the various region of cavern vicinity are compared with

the Desai dilatancy boundary. To conclude, the minimum permissible internal pressure

is governed by the depth of locating the cavity. In deeper caverns, more internal pressure

should apply to prevent irreversible volumetric change due to dilatancy.
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Moreover, a comparative study on different simulation strategies of solution mining was

conducted. The results approved that the differences produced by simplifying the nu-

merical analysis by modelling the whole excavation phase in a single time interval are

negligible.



4 Sensitivity Analysis

4.1 Global sensitivity analysis

The response of a system is not affected equally by all the involved factors. On the other

hand, reducing the associated uncertainty in some input parameters may decrease notice-

ably the uncertainty measures in the model response, compared to the others. Hence,

identifying those dominating input variables enables an effective selection of the measure-

ment design. In this regard, the Sensitivity Analysis (SA) can be employed to detect

the key input factors which have the greatest impact on the model output variation. In

practice, two main categories of SA methods can be distinguished, the local SA category

and the global one. In the local approach, the effect of a small variation of a single input

parameter on the model output is investigated, while all the other factors are fixed. This

approach also is known as one at a time and involves partial derivatives. The local meth-

ods can be considered as the historically first attempts to conduct SA and they provided

valuable results. In general, numerical implementation of differential analysis and the de-

manding computational effort for local methods is affordable, hence they will be effective,

specifically in the analysis of large systems. For a review of different local SA methods,

see Cacuci (2003). Evaluation of partial derivatives of the model at the base point can

provide a sensitivity measure. Hence, the calculation cost of this approach is low, and the

demanding number of model evaluations is limited. Nevertheless, calculating derivatives

around the base point cause some limitations in local methods as the necessity of linearity,

monotonicity or additivity assumptions. However, calculating derivations around a base

point in the space of an individual input factor makes this methodology model-dependent.

Therefore, when the system deals with non-linear/ non-monotonic models, the local ap-

proach of SA may not provide a reliable importance ranking of the input factors. In

this regard, the derivatives should be substituted with an exploration of the entire input

parameter space. To accomplish this, the second category of sensitivity analysis methods,

i.e., Global one is developed. The global methods consider the entire variable space of

inputs to estimate their impacts on the model responses. Besides eliminating the local

51
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methodology limitations, using the global sensitivity makes the identification of interac-

tions between the input parameters also feasible (Cacuci, 2003). With the advancement

of computational capabilities, comprehensive numerical approaches are increasingly used

for simulating different geotechnical problems. These sophisticated simulation models of

underground structures are supposed to model coupled and highly non-linear phenomena

involved in the geomaterials behaviour. On this subject, the global sensitivity analyses

techniques can be considered as a proper alternative to such models. In general, a global

SA enforced a larger number of model evaluations rather than the local methods. To

overcome this drawback of the global sensitivity analysis, metamodelling concept (see

Sec. 4.8) can be employed.

However, in the last five decades, a diverse range of SA techniques have been developed

in different scientific disciplines. Thereupon, for the choice of an appropriate SA method,

among all the available methods, a non-expert SA operator (designer, who has a prior

knowledge about the variety of methods), may be confused or even misled. In this regard,

some attributes of the model of interest can be considered as key features to facilitate

the choice of proper method. In the following, in addition to introducing some common

global SA methods, a number of general fundamental aspects of employing an appropriate

method, considering system features are discussed.

In this chapter, four alternative global SA methods, namely, Regression methods, Random

Balance Design (RBD), Sobol’/Saltelli, and Elementary Effect (Morris) are introduced

and applied to a geotechnical task solved by a finite element model. Here, the response of

a rock salt cavity employed as a compressed air energy storage is investigated. The rock

salt formation, as a porous media with low permeability and creep features, has been used

as host rock of the hydrocarbon storage for decades. Nowadays there is a new trend to use

them as the storage for the excess electrical energy produced by renewable resources in the

form of compressed air or Hydrogen. Consideration of the uncertainty in the mechanical

properties of such a huge structure (the storage volume may reach to 1 million m3),

which is extended vertically downward more than hundred meters from the ground level

is substantial. Here, the stress state around the cavity is regarded as the interested model

output. Firstly, a deterministic model of a typical compressed air storage in rock salt is

generated. In the following, the performance of different SA techniques is compared in

the aspect of required computational effort and result conformity. Furthermore, provided

sensitivity indices by various methods are used to achieve a better understanding of the

system behaviour, in the aspect of the probable interaction and non-linearity.

In general, global SA techniques are developed to detect the most important set of pa-

rameters which dominate the system output and require additional measurement or ob-
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servation efforts for strengthening the knowledge base. Moreover, global SA may object

to detect ineffective input variables. Hence, it enables the designer to fix their values

based on a simplified experience in statistical analyses and reduces the model complexity

for any further deterministic or probabilistic investigation.

To decrease the extent of existing uncertainties in the numerical approximation, the com-

putational model is usually calibrated by back analysis methodologies, e.g., global op-

timisation algorithms and Bayesian inverse techniques (Meier et al., 2009; Miro et al.,

2015). Nevertheless, the available measurements of geotechnical projects as a rock salt

cavern are limited which may restrict the possibility of taking advantage of back anal-

ysis techniques. Besides, the location where a certain sensor is placed to monitor the

system output will influence the outcomes of the parameter identification considerably.

Thereupon, the concept of optimal experimental design can be utilised to decrease the

uncertainty measures of the input factors. Numerous publication explored the method-

ologies to obtain an optimum experimental design in various fields of science, e.g. Bardow

(2008) in chemical engineering, Ucinski (2005) in environmental processes and Joshi et al.

(2006) and Schenkendorf et al. (2009) employed the optimal experimental design in sys-

tem biology. Also, Lahmer (2011) used this strategy to find out the best positioning

plan of sensors in gravity dams. In this regard, global SA can be applied in the subject

of optimum experimental design. For instance, to find the optimal sensor positions for

parameter identification, the variance-based sensitivity analysis can be used to identify

areas in which the model outputs are most sensitive to the unknown parameters of inter-

est. Doing so, the arrangement of sensors can be evaluated and optimised. The author

has employed this feature of the global SA in Hölter et al. (2015) and Hölter et al. (2017)

to investigate the optimal experimental design for a loading experimental setup and a

mechanised tunnelling project, respectively.

As mentioned previously, there are several well-developed global SA techniques, which

can evaluate the uncertain input factors and rank them using different statistical mea-

sures. Since these methods have their own definition of importance or significance, their

obtained importance ranking may disapprove each other and lead to confused or incon-

clusive results, subsequently (Rocquigny et al., 2008). Thereupon, the term of ”important

factor” in the model of interest should be predefined. A so-called setting can provide such

a definition (for a general review of the different settings, the reader is referred to Saltelli

et al. (2008)). Among the others, two standard settings are:

• The Factor Prioritisation setting: it is defined to detect a factor which enforced the

greatest reduction in the output variance when its real value is identified. On the

basis of this setting, when an ”important” uncertain variable can be determined
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precisely, the variance of output would lessen significantly. Therefore, when the

designer is interested in reducing the output variance, this setting can detect and

rank those factors which are the most deserving of a proper investigation through

more measurements and observations.

• The Factor Fixing setting: it can detect parameters, which fixing them at any given

value over their range of uncertainty makes no meaningful reduction in the output

variance. It can detect non-influential factors. This setting is a proper choice to

simplify the model of interest when it is dealing with many input variables, while

it can identify non-influential factors, which represent some specific features in the

system behaviour.

Among the available global sensitivity analysis methodologies, in this thesis three dif-

ferent class of methods are investigated in detail: i)Regression-based methods, ii) the

quantitative sensitivity indices (a.k.a. the importance measures techniques), and iii) the

screening methodology. In the following, an overview of different methods of global sensi-

tivity analysis, namely Regression-based technique, Sobol’/Saltelli and Random Balance

Design (classified as the importance measures techniques), and Elementary Effect (as a

screening method), is presented. Also, a comparative assessment is conducted to evaluate

the performance of the given techniques in various aspects as, the cost in the number of

system evaluations, the model complexity and the type of provided information.

4.2 Regression-based methods

In order to address non-linear models, we have to move from derivatives into the explo-

ration of the input factors space, e.g. using Monte Carlo. Global sensitivity analyses are

conducted by generating a matrix samples of input factors, evaluating the corresponding

output vector, and assessing the relative importance of each input factors on the output.

The most popular method to do this is to try a linear regression on the sampled input

matrix through an appropriate sampling method, and the evaluated vector of outputs.

In general, regression analysis is employed to build response surfaces that approximate

computational models (Hamby, 1994). On the other hand, regression analysis can provide

sensitivity measures, as their application in SA is reviewed in Helton et al. (1991) and

Helton (1993). To provide general form for a regression equation of the generic model

of y = f(Xi), we generated via Monte Carlo a set of model evaluations yi, i = 1, ..., N ,

corresponding to N different sampled values Xi (Xi = x1, x2, ..., xk) of input factors are



4.2 Regression-based methods 55

considered.

ŷ = b0 +
k∑

i=1

bi ·Xi, (4.1)

where the hat notation flags the model estimates, and bi are regression coefficients. The

estimated model is known as a fitted response surface, and SA measures can be derived

from this fitted model. As the simplest approach, the coefficient bi can be treated as

importance measures for different input factors. Nevertheless, their values depend on the

considered units for the input variables Xi. Therefore it is necessary to normalise these

coefficients to generalise them as assessment indices. A standardisation process can ad-

dress the issue of units and the relative magnitudes of parameter values. Standardisation

can be done in the form of the ratio of the parameter’s standard deviation to the output’s

standard deviation. To compute the standardised regression coefficients (a.k.a. SRC),

defined as

βi =
biσi
σy

. (4.2)

The βi can give an insight to the relative importance of the input factor Xi (Saltelli et al.,

2000). The use of the regression technique can be classified as Factor prioritisation which

allows the sensitivity ranking to be determined based on the relative magnitude of the

regression coefficients (Hamby & Tarantola, 1999). Therefore, one may conclude, when∑
β2
i is close to one, then the regression model is considered the most of the variability

in the y, and flags a linear model (Saltelli et al., 2004). Although this method is working

efficiently for the linear models, it is still model-dependent, i.e., the degree of linearity of

the model of interest is a significant factor.

As an example to illustrate the SA regression estimation, a linear test function is consid-

ered with three independent uniformly distributed variables Xi, where i = 1, 2, 3

y = x1 + x2 + x3 + x4; where,





x1 ∼ U(0.5, 1)

x2 ∼ U(1, 3)

x3 ∼ U(3, 12)

x4 ∼ U(12, 36)

(4.3)

Generating a randomly sampled (500, 3) matrix, the first-order sensitivity index, are esti-

mated as β1 = 0.0188, β2 = 0.077, β3 = 0.34, β4 = 0.93; and the
∑3

i=1 β
2
i = 0.986 estimates

the fraction of linearity of the model. It should be pointed here that, using a local SA

method, i.e., derivatives in such a test model evaluates the same relative importance of all
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the variables, although considering their different distribution, they have various impacts

on the model output.

However, the effectiveness of the βi’s as sensitivity measures is judged by the model

coefficient of determination

R2
y =

∑N
i=1(ŷi − ȳ)2

∑N
i=1(yi − ȳ)2

, (4.4)

where ŷi is the regression model prediction and R2 ∈ [0, 1]. If R2
y is close to 1, then the

regression model is accounting for most of the variability in the yi, and the βj can be used

to gain insight into the relative importance of the input factors. Conversely, low values

for R2
y suggest that the model has non-linear behaviour.

Helton et al. (1986) presented the standardised rank regression coefficients method, which

is able to assess the system sensitivity analysis for non-linear, but monotonic, models

(Saltelli & Sobol’, 1995). In the rank-based version of the Standardised Regression Coef-

ficients, both the input and the output values are replaced by their ranks, when no extra

computational cost is required (Saltelli et al., 2000). In many of other applications, dif-

ferent regression based techniques as the Standardised Rank Regression Coefficients and

the Partial Rank Correlation Coefficients are performed (for instance see Saltelli & Sobol’

(1995); Helton et al. (1991)). Saltelli & Homma (1992) pointed out the inadequacy of

this schemes to deal with non-monotonic relationships.

However, regression methods were extended with the main idea of express fractional

contributions to the total variance of Y . Albeit these techniques were applied successfully,

their performance depends on the degree of linearity or monotonicity of the model of

interest. This idea can be considered as the basis of developing another group of SA

methods classified as variance based methods, which are model-independent.

4.3 Variance-based methods

In general, variance-based estimates the output variance and the contribution of the

uncertainty of each input factor and their probable interaction in this variance. Variance-

based methods are independent of linearity, monotonicity, additivity, etc. (i.e., model

independent), and they can evaluate the interaction effects among the input factors.

Variance-based methods for SA were first employed by chemists in the 1970s (Cukier

et al., 1973, 1975, 1978). Later, Sobol’ (1993) developed the work of Cukier et al., to

calculate the sensitivity measures, using a Monte Carlo-based implementation. A review
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of different variance-based methods with their recent developments can be found in Chan

et al. (1997) and Saltelli et al. (2004).

The method of Cukier and colleagues, known as FAST (Fourier Amplitude Sensitivity

Test) was quite effective in calculating the first-order (main effect) measures of variance-

based methods but has its limitations as difficulties in implementation and no considera-

tion of higher order indices. Tarantola et al. (2006) addressed the first drawback by em-

ploying RBD methodology to simplify FAST calculation, which is adopted in the present

thesis. Moreover, the computation of higher-order indices was later made possible by ex-

tensions proposed by Saltelli et al. (1999). The method of FAST was generalised later by

Sobol’ (1993) to compute the sensitivity measures, employing a Monte Carlo implemen-

tation. The work of Sobol’ constitutes a milestone in the development of variance-based

methods.

In general, one may conclude the features of variance-based methods as:

• capable of capturing the influence of the full range of variation of each input factor,

• consider the interaction effects of input factors,

• they are model independence and compute the model-free sensitivity measures.

In the following, the methodology of analysis of variance based on variance decomposition

is briefly presented. Let us consider a generic model of Y = f(Xi),∀i = 1, ..., k, where k

is the number of input parameters, and adopt factor prioritisation setting. In this regard,

parameter Xi is fixed at x∗i and the conditional variance of model VX∼i
(Y |Xi = x∗i ) is eval-

uated. The notation V is the variance value, and X∼i is the vector of all input variables

but Xi. This conditional variance is generally less than the corresponding total variance

V (Y ) (i.e. in non-linear models one may reach VX∼i
(Y |Xi = x∗i ) ≥ V (Y )), but still influ-

enced by the chosen value for x∗i . This drawback can be overcome by taking the average

and variance of this measure over all possible values x∗i , and calculate EXi
(VXi

(Y |Xi))

and VXi
(EX∼i

(Y |Xi)). Based on the following algebraic rule,

EXi
(VX∼i(Y |Xi)) + VXi

(EX∼i
(Y |Xi)) = V (Y ) (4.5)

averaging the conditional variance will assure EXi
(VX∼i(Y |Xi)) ≤ V (Y ) for all models.

In this equation, the term VXi
(EX∼i

(Y |Xi)) is known as the first-order effect of Xi on Y ,

or as McKay (1997) called, correlation ratio. The term EXi
(VX∼i(Y |Xi)) is known as a

residual and indicates the variance of the expected value of Y over all but Xi, which has

been fixed.
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Normalizing the term of VXi
(EX∼i

(Y |Xi)) on model variance, provides the first-order

sensitivity index as follows,

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
, (4.6)

Si is known as first-order effect of Xi on V (Y ). A high value of Si, and hence higher

VXi
(EX∼i

(Y |Xi)) indicates an important input variable. An important factor here denotes

a variable which decreasing its variance will reduce the uncertainty of model output most.

It should be pointed out here that
∑k

i=1 Si ≤ 1, and
∑k

i=1 Si = 1 will be held for additive

models, then this measure also can be employed to determine non-additive models.

For non-additive models or models with interaction effect between input parameters where∑k
i=1 Si < 1, the higher order of sensitivity indices due to the interaction between Xi and

the other parameters, is also involved in the variance of output. For a non-additive model

evaluating Si will not recover 100% of the variance, hence one should add the higher order

sensitivity indices to get

∑

i

Si +
∑

i

∑

j>i

Sij + ...+
∑

i

∑

j>i

∑

l>j

...
∑

k

Sijl..k = 1. (4.7)

Computing the higher order indices, when there are many interactions between parameters

is not feasible, specificity when the number of associated parameters is high the Eq. 4.7

has 2k − 1 terms. Thereupon, another sensitivity measure denoted as ST i was introduced

which considers a full set of all terms including Xi. This index entitled as total-effect

sensitivity index, can be evaluated as

ST i = 1− V (E(Y |X∼i))
V (Y )

=
E(V (Y |X∼i))

V (Y )
. (4.8)

By definition, the term of V (E(Y |X∼i)) includes effect of all inputs but ith factor. Also,

the term of E(VX(Y |Xi)) indicates the average of the remaining variance of Y , when the

Xi is fixed, which is known as the residual term as well. ST i covers a full set of terms that

consist parameter Xi. Hence, ST i denotes the total effect of all terms with any orders that

includes Xi. Recalling the definition of the factor fixing setting, ST i can be contemplated

as an index for this setting.

To estimate the above-mentioned sensitivity indices (a.k.a Sobol’ indices), Monte Carlo

sampling based methods have been proposed firstly by Sobol’ (1993). However, the pro-

posed method was computationally expensive in term of the number of model calls to

reach precise estimates of sensitivity indices (i.e. kN2 model runs are needed). An exten-

sion of Sobol’ method was developed which using quasi-Monte Carlo sequences instead of
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crude Monte Carlo samples to calculate both first and total-effect indices along reduced

number of model evaluations (Saltelli, 2002; Saltelli et al., 2008). Moreover, Marzban

& Lahmer (2016) proposed a conceptual implementation for calculating the Sobol’s first

order effects using limited model evaluations. The performance of this implementation is

stable and accurate in the case of large models with limited available data.

4.3.1 Random Balance Design

One of the well-designed methods for conducting sensitivity analysis, which could explore

the entire input space for monotonic and non-monotonic models is FAST (Saltelli et al.,

1999). The core feature of FAST is that the multidimensional space of the input factors

is explored by a suitably defined search-curve introduced in the 70’s Cukier et al. (1973)

and computationally upgraded by Koda et al. (1979). FAST method computes the major

effect of each input factor to the variance of the output; it can be considered same as the

first-order measure Si in Sobol’ method (Iman & Hora, 1990; Homma & Saltelli, 1996;

McKay, 1997). Nevertheless, Mara (2009) mentioned that estimating sensitivity indices of

any order is also possible and Saltelli et al. (1999) extended FAST to calculate the higher

order sensitivity measures. The RBD and Hybrid FAST-RBD methods, proposed by

Tarantola et al. (2006), modified FAST method using a new sampling technique based on

Satterthwaite’s random balance designs (Satterthwaite, 1959). Recently, Plischke (2010)

derived a new method known as Effective Algorithm for computing global Sensitivity

Indices, which estimates first-order sensitivity index based on FAST technique, as a post-

processing module for model evaluations.

FAST employs Parseval’s relationship to decompose the variance of a model response

in the frequency space (Mara, 2009). Recalling the generic model of Y = f(Xi),∀i =

1, ..., k, Y can be obtained by an analytical representation of a system or the output of a

computational model. The factor values are sampled in N sample points from a periodic

curve exploring the space of a k-dimensional cube, with a different frequency ωi assigned

to each factor. The frequencies should be selected such that they are free of interferences

up to a given order of higher harmonies, M (commonly is assumed to be equal to 6).

Afterwards, the Fourier spectrum is calculated on the model output at each sample point

for the frequency of ωi. The parametric curve is defined as,

Xi = Tisin(ωidj) ∀i = 1, ..., k; ∀j = 1, ..., N (4.9)
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where dj is a scalar variable varying over the range −∞ < dj < +∞, and sampled over its

range using N sample points. Ti is the transformation function which is chosen according

to the desired probability density function of the input parameter of Xi, and ωi are the

frequencies, associated with each factor. Homma & Saltelli (1996) proposed the following

transformation to provide a uniformly distributed sample for the factors

Xi =
1

2
+

1

π
sin−1sin(ωidj), (4.10)

which is a set of straight lines oscillating in the range of [0 − 1], while −π < dj < +π.

The classic FAST method forces a sophisticated algorithm to set all the frequencies free

of interferences (Tarantola et al., 2006; Tarantola & Koda, 2010). Moreover, FAST is

unstable when the number of inputs increases, due to its discrete harmonic analysis feature

(Tissot & Prieur, 2012). Tarantola et al. (2006) simplified the procedure of FAST method

by including random balance designs in FAST. In this method, the input space is explored

using an arbitrary frequency ω for all input factors. Although this assumption avoids the

complex calculation of different frequencies involved in the original FAST method, the

generated curves do not cover the entire input space. This limitation is addressed by

employing random permutation of sample points to assure a full coverage of the input

space. The model is evaluated N times

Y (dj) = f(X1(d1j), X2(d2j), ..., Xk(dkj)) ∀j = 1, 2, ..., N. (4.11)

Then, the sample points are ranked on Xi are re-ordered in increasing order and the

associated evaluated model outputs Y (dj), j = 1, ..., N , as well. Then, the frequency ω

and its higher harmonies (i.e., 2ω, 3ω, ...,Mω) will be applied to calculate the Fourier

spectrum of the model output F (ω).

F (ω) = | 1
π

N∑

j=1

Y R(dj)e
(−iωdj)|2, (4.12)

where (Y R(dj)) is re-ordered model output such that the corresponding values of X1(dij)

are ranked in increasing order. In the following, an estimate of the first-order sensitivity

index (a.k.a. importance measure (Iman & Hora, 1990; Ishigami & Homma, 1990) is

evaluated as

Si =
1

VY
(V (E(Y |X∼i)) =

M∑

l=1

F (ω|ω=l). (4.13)
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Afterwards, the ranking process mentioned above is repeated for each Xi, using the same

initially N sampled points. Due to the use of random permutation, the calculation cost

of this method is decreased to N model evaluations. For more details, the reader is

referred to Tarantola et al. (2006). However, the RBD method merely computes the

first-order term, therefore it just able to decompose the 100% of output variance in the

case of additive models. In this regard, one may use
∑k

i=1 Si to identify whether the

model is additive or non-additive. If the sum is noticeably smaller than 1, we must use

another algorithm to compute interactions or total-effect terms. An advantage of RBD

is that it is relatively easy to implement. Also, the sample size N , being independent

of the number of factors k, makes it an affordable technique even for computationally

expensive models. It also should be emphasised that FAST and RBD estimate positive

sensitivity measures. This methodology applied previously by Nguyen-Tuan et al. (2017)

to investigate a thermo-hydro-mechanical geotechnical problem.

The main features of RBD in comparison with the FAST method can be summarised as

• better convergence properties rather than FAST

• no need to search for frequencies free of interferences

• avoiding the problem of aliasing in FAST which can be due to a small sample size

N

• the sample size N , is independent of the number of factors k and

• it is relatively easy to encode.

Later in the next section, we test the performance of the RBD in evaluating the sensitivity

indices of nine constitutive input factors considering the dilatancy behaviour of a rock

salt cavity.

4.3.2 Sobol’s method (Monte-Carlo based implementation)

The main idea of variance-based methods is to evaluate how the variance of inputs con-

tribute to the variance of the model output. Recalling the Sobol’ indices, the Si as the

first-order sensitivity measure which evaluates the sensitivity of model Y to input factor

Xi without considering the interaction between input parameters. The total-effect sensi-

tivity index ST i estimates the effect of input factors and their interactions with the other

input factors. Sobol’ (1990, 1993) proposed the Monte-Carlo based numerical procedure

for the calculation of the first and total-effect sensitivity indices. Saltelli and colleagues

modified the crude Monte Carlo based method by Sobol’ with the much less computational

burden (Saltelli et al., 1993; Homma & Saltelli, 1996). This technique was modified later,
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in such a way that estimation of the full sets of first and total order sensitivity indices is

about 50% cheaper considering the number of model evaluations (Saltelli, 2002). In the

following, this procedure is presented for a model of k factors Y = f(Xi);∀i = 1, ..., k.

Firstly, two randomly sampled (N, 2k) matrices C1 and C2 are generated, N is the number

of samples, and k is the number of input parameters. Afterwards, a new matrix Ri is

defined with re-sampling all arrays from C2, but its ith column which is identical with C1

matrix. Then, model output for C1 and C2 are evaluated as

yC1 = f(C1) yC2 = f(C2) yR = f(Ri). (4.14)

Finally, with (4.15) and (4.17) variance-based indices for model inputs evaluate.

Si =
yC1 .yRi

− f 2
0

yC1yC1 − f 2
0

, (4.15)

here yC1 , yC2 and yRi
are vectors containing model evaluations for matrices C1, C2 and

Ri respectively. While the symbol (.) denotes the scalar product of two vectors, the mean

value f0 is defined as

f0 =

(
1

N

N∑

j=1

y
(j)
C1

)2

. (4.16)

In the following, a similar method is adapted to estimate the total-effect index,

ST i = 1− yC2 .yRi
− f 2

0

yC1 .yC1 − f 2
0

. (4.17)

The total-effect index accounts for the total contribution to the output variation due

to factor Xi, i.e., its first-order effect plus all higher-order effects due to interactions

(Homma & Saltelli, 1996). It should be emphasised that the aforementioned equations

used to compute the SA measures only when the input factors Xi are independent.

Running the program to obtain the y vectors in Eq. 4.14 is the most costly step of the

proposed procedure. The cost of this approach to estimate both Sobol’s indices, is equal

to N(k+2) times model evaluations. We need k×N model calculations for Ri;∀i = 1, ..., k

matrices, and N times for matrices C2 and C1, separately.
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4.4 Elementary Effect

Screening methods exploring the model behaviour based on a discretisation of the input

space, provide a fast exploration of the system response. The main idea of screening is

originated from the local SA techniques. These methods can be adapted to the sophis-

ticated models with tens of input parameters to identify the non-influential factors with

a relatively small number of design evaluations (Hamby, 1994). Afterwards, the model

can be simplified before using other more accurate but more costly SA methods; Morris

(1991) presented the Elementary Effect method as a global SA methodology. This ap-

proach is referred to as Morris method hereafter. This method allows to identify inputs

are having negligible effects, and variables that express large non-linear and interaction

effects, as well. Based on the proposed technique by Morris, each parameter range is

normalised and discretized into a p-level grid. Therefore the parameter space of a model

with k parameters is converted to a k-dimensional unit cube.

To estimate the Elementary Effect of the ith parameter (EEi,∀i = 1, 2, ..., k) for a given

point in this grid X = (X1, ...Xi, ...Xk), ∆ as a small perturbation is added to the ith

input parameter in a random order. With this, ∆ is an increment equal to p/2(p−1) and

EEi is calculated by

EEi =
Y (X1, X2, ..., Xi + ei∆, ..., Xk)− Y (X1, X2, ..., Xi, ..., Xk)

∆
, (4.18)

here ei is a unit vector in direction i, which is selected randomly. To compute EEi for k

parameters, Morris proposed an efficient methodology which crosses a trajectory of k+ 1

points in the normalised parameter space. Each trajectory provides one EE for each

input parameter, and by considering r trajectories (r ≈ 10 − 500), the total number of

required simulations is r(k + 1). Now there is a collection of r EEs for each parameter.

Since the mean of EE represents the average effect of each parameter over the parameter

space, the mean EE can be regarded as a global sensitivity measure (Wainwright et al.,

2014). The mean and the standard deviation of EEs denoted as µ and σ, respectively,

are calculated as

µi =
1

r

r∑

j=1

EEi
j (4.19)

σi =

√√√√1

r

r∑

i=1

(
EEi

j −
1

r

r∑

i=1

EEi
j

)2

(4.20)
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where, µi and σi are considered as the sensitivity indices. µi represents the average

effect of each variable over the parameter space, and σi can notice the existence of any

interaction between parameters and/or non-linearity of the model. Small σj is identifying

a linear relationship between the studied input and the output. Also, µi may provide

information about the sign of the input’s effect on the system behaviour, which helps

to realise the nature of the problem. Nevertheless, different signs of EEi, e.g., in some

models, may lead to significant changes in their mean value µ, and an imprecise parameter

ranking, subsequently. In this regard, Campolongo et al. (2007) suggested using the mean

of absolute Elementary Effect indices |EEi|, denoted as µ∗. The smaller µ∗ of a factor

identifies a less contribution to the output uncertainty. This measure is suitable for the

factor fixing setting. Moreover, as Saltelli et al. (2008) mentioned, a lower value of σi,

which is due to similar values of the Elementary Effects, reveals that the effect of Xi is

almost independent of the values taken by the other factors. Therefore, it can be used

as an identification measure to detect the interaction/non-linearity effects between input

factors. Then, a graph depicting µi and σi may offer information to distinguish the linear

factors, non-influential ones, and also factors with interaction/non-linear effect.

The elementary effect is numerically efficient and can be applied to sets of factors. More-

over, it is a proper choice for factor fixing setting. This method can also be used before

employing a costly variance-based technique to prune the number of factors to be consid-

ered. This global SA methodology used previously by the author, in other publications

as Mahmoudi et al. (2015b); Khaledi, Mahmoudi, Datcheva, König & Schanz (2016).

4.5 Choose a proper SA method

Tab. 4.1 concludes the above-mentioned attributes of the introduced SA techniques, i.e.,

their related setting, the cost of analysis, the required number of runs, and the additional

information that each of them may provide.

As a conclusion of all introduced methods, one may provide a primary guideline to choose

an appropriate method. Fig. 4.1 depicts such a decision tree which leads to the most

appropriate technique based on the system features as model complexity, demanding

computational costs and the dimension of the input space. Based on illustrated graph in

Fig. 4.1, one should firstly consider the complex features of the model, the local approach

is the best choice for linear systems, for the others, global techniques must be employed.

In a linear regression, the value of the standardised regression coefficient is the same as

the correlation coefficient or first-order sensitivity measures. At the further steps, the
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number of associated parameters and the regarded computational costs in a single model

evaluation, are decisive factors. In general, using screening methods for the models with

a high number of input parameters and computationally expensive ones is recommended.

Also, one may use the grouping techniques as recommended in Saltelli et al. (2000) to

shrink input space. Afterwards, one may fix a set of non-influential inputs and further

evaluates the variance-based sensitivity measures suggested by Sobol’. Nevertheless, in

the following, we applied all three techniques on the same model of a rock salt cavern to

compare their outcomes’ conformity and abilities to provide additional information about

the model response.

4.6 Numerical example

A typical salt cavern with a simplified geometry is modelled using a finite element model.

Since the cavern has a cylindrical shape, only half of the geometry has been simulated.

The axisymmetrical model has a height of 800 meter and a width of 300 meter. A detailed

description of the simulated excavation and operation process was given in Chapter 3.

As mentioned previously in Chapter2, in order to guarantee the stability and serviceability

of the cavity, dilatant zones caused by excessive shearing should be avoided. The dilatant

behaviour is defined by the beginning of the irreversible volumetric expansion, and may

initiate the damage progress and leads to long-time failure (Hunsche & Hampel, 1999).

In this regard, the stress state of the rock salt around the cavern is considered as the

interested model output. Here, the stress state in different observational points around

the cavern wall (as shown in Fig. 3.11), are investigated. The finite element model is

constituted based on an elasto-viscoplastic creep material model, presented in Sec. 2.3

(Mahmoudi et al., 2017). For the sake of simplicity, we assume that the shape of the yield

surface in the π-plane remains unchanged. Therefore, related parameters, namely b, β

and β1 are kept constant. Hereupon, this example considers nine independent constitutive

parameters as uncertain parameters in the governed material model introduced in Sec. 2.

These uncertain parameters are E and ν as parameters of the elastic behaviour, as well

as six viscoplastic parameters in the constitutive model (namely Nf , n, λ, a1, γ and η)

in addition to η∗M which controls the steady state strain rate. It should be indicated

that the investigated constitutive parameters in this study are considered as independent

variables, which have no correlation.

Nine constitutive parameters are regarded as the uncertain parameters. Tab. 4.2 repre-

sents the definition and the assumed statistical measures of these uncertain parameters.
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It also should be mentioned that all the regarded uncertain parameters are assumed to

follow a Gaussian probability distribution.

Baecher & Christian (2005) did an analysis investigating the effect of different probability

density function of geomaterials on the reliability measures. They concluded that the

assumption of a Normal distribution in the absence of further information is conservative

and such an assumption will probably overestimate the probability of failure.

Also, the further argument for using the Normal distribution is that the geological and

geotechnical phenomena are determined by the combined contributions of a wide variety of

small effects and, considering the Central Limit Theorem, the distribution of the overall

effect ought to be Normal. Based on this theory, for a wide range of conditions, the

distribution of the sum of a vast number of variables, while no one variable dominates,

converges to a Normal distribution. The only drawback of using a Normal distribution

is that it allows negative values, which is unrealistic for many of the material properties

of rock and soils. However, because of the usually small considerations for the value

of the coefficient of variation, the portion of the Normal distribution that has negative

values is so small that it has almost no effect on the obtained results. Among the other

distributions which can be applied to geotechnical variables, as Exponential Function,

Gamma and Beta distributions, considering lognormal distribution for geomaterials is also

very common. Assuming lognormal distribution can be adjusted by this argumentation

that the combinations of different random variables are commonly represented by their

product not the sum of individual effects. Hence the resulting distribution should reflect

the sum of their logarithms (Baecher & Christian, 2005). Moreover, using the lognormal

distribution can settle the issue of negative values. However, for the sake of simplicity

and considering the fact of delivering conservative outcomes, in this thesis, the normal

distribution is considered for all the constitutive parameters. In Sec. 6.4, where the higher

variations are assumed, the lognormal distribution is applied.

4.7 Results

The aforementioned SA techniques in Sec. 4.1 are applied to the model introduced in

Sec.4.6. The obtained results and remarks are presented in the following.

4.7.1 Convergence Analysis

As mentioned previously, the required number of model evaluations in the Monte Carlo

based approach proposed by Saltelli can be adjusted within a convergence analysis; this
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Table 4.2: Uncertainty representation of constitutive parameters

Parameter Description Dimension Boundaries COV(%)

E Elastic modulus MPa [19000 , 25000] 15
ν Poisson Ratio [-] [0.25 , 0.28] 5
n Transition parameter [-] [2.4 , 3.5] 15
Nf Flow exponent [-] [2.4 , 3.5] 15
λ Fluidity parameter s−1 [0.5e-14 , 0.5e-11] 10
a1 Hardening parameter MPa(2− n) [0.3e-4 , 0.35e-3] 10
γ Ultimate parameter [-] [0.085 , 0.11] 10
η Hardening parameter [-] [0.7 , 0.9] 10
η∗M Maxwell coefficient MPa s [1e12 , 3e12] 15

analysis is adapted from Yang (2011). To conduct a convergence analysis, firstly R repli-

cas (in this study R = 50) of a base sample of dimension m should be generated. Then

the corresponding sensitivity measures for each replica is evaluated. In this step, the sta-

tistical measures of the indices (namely, mean and coefficient of variation) are evaluated.

These steps are repeated for various sample size (N) till its coefficient of variation (COV)

converges. Fig. 4.2 depicts the convergence of the ST i regarding the required number of

samples (N). For accurate estimations of the sensitivity measures, we assumed N is equal

to 1500, and subsequently the required number of model evaluation is 22000.

Fig. 4.3b and 4.3a show the confidence intervals (as boxplots) of the estimated sensitivity

indices, µ∗ and ST i, respectively. To evaluate ST i index, we considered N = 1500 and

the number of trajectories, r is assumed to be equal to 300, the estimation process are

repeated 50 times for each estimated indices. As figures shown, the variation of estimated

indices, in Morris method is higher than those evaluated any Sobol’/Saltelli technique.

Moreover, increasing the relative importance of input factors raises the related variation

in the estimation process.

4.7.2 Sensitivity measures

Fig. 4.4 and 4.5 present the outcomes of Sobol’/Saltelli technique of DF with respect to

the constitutive parameters, namely Si and ST i. The first order sensitivity indices that are

estimated using RBD method are illustrated in Fig. 4.6. It should be noted that for those

non-effective variables, in some analyses the negative values are also obtained as their

first-order sensitivity index. Negative signs are due to numerical errors in the estimates.
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Figure 4.2: Convergence ST i

Such negative values can often be encountered for the Saltelli method when the analytical

sensitivity indices are close to zero (i.e. for unimportant factors). Increasing the sample

size of the analysis reduces the probability of having negative estimates. FAST and RBD

estimates are always positive, by the construction.

Results obtained by Morris method are presented in Fig. 4.7. The sensitivity analysis

is carried out at various points around the cavity wall, Ni,∀i = 1, ..., 5 illustrated in

Fig. 3.11. Based on these results, n has the most impact on the variation of DF as a mea-

sure for dilatancy occurrence in the system. Also, the parameters ν,Nf and λ have the

least influence on the outputs, therefore, in the next steps of this chapter their variations

are neglected, and they are fixed to the values mentioned in Tab. 2.3. The sensitivity of

volume change of the cavern is also estimated considering the same constitutive parame-

ters and provided in Fig. 4.7b. As expected, the most sensitive constitutive parameter to

the volume change is the Maxwell coefficient. The estimated major effect for the Maxwell

viscosity coefficient can be adjusted to the fact that it governs the time-dependent be-

haviour (i.e., steady state creep) of the system and the period considered in the model is

relatively long (more than 3.5 years).

4.7.3 Temporal sensitivity analysis

Since the thermo-mechanical behaviour of the rock salt is time-depended, thus in addi-

tion to studying the efficiency level of constitutive parameters in different zones around
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(a)
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Figure 4.3: Estimation of a) µ∗ and b) ST i in point N4. (Each boxplot corresponds to 50
independent estimates)
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Figure 4.4: First-order sensitivity index Si in different regions (N1 to N5 as displayed in
Fig. 3.11) around the cavern, calculated by Sobol’/Saltelli approach
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Figure 4.5: Total-effect sensitivity index Si in different regions (N1 to N5 as displayed in
Fig. 3.11) around the cavern, calculated by Sobol’/Saltelli approach
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Figure 4.6: First-order sensitivity index Si in different regions (N1 to N5 as displayed in
Fig. 3.11) around the cavern, calculated by RBD approach
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Figure 4.7: Elementary effect sensitivity indices of (a) DF in different regions (N1 to N5 as
displayed in Fig. 3.11) around the cavern and (b) volume loss to constitutive parameters
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the cavity, one may survey the change in their importance level during excavation and

operational time. In this regard, the effect of various parameters of the creep, as the

most time-dependent component of the constitutive model is surveyed in Mahmoudi

et al. (2015b). In this section, the effect of variation in three material constant values

on horizontal displacement of point N3 in Fig. 3.11 is investigated. For this purpose, the

horizontal displacement of the point N3 within 60 days is observed while the finite el-

ement model used the LUBBY2 constitutive model (For more detail see Sec. 2.1). The

uncertainty measures of the constitutive parameter values of the LUBBY2 model are

presented in Tab. 4.3 (Mahmoudi et al., 2015b). Morris and VB methods have analysed

the sensitivity of model outputs to input data. Two variance-based measures Si, ST i

and one elementary effect index µ∗ calculated versus time of loading represent in Fig. 4.9,

4.10 and 4.8, respectively. Based on results, the sensitivity measures of the mechanical

response of the cavity to various constitutive parameters changes versus time. In the

short term the most important parameter in LUBBY2 model is Kelvin dashpot coeffi-

cient. During the first day of analysis its sensitivity is considerable, but after one day

decrease, as varying its value does not change the displacement of cavern’s wall. Also, the

Kelvin spring’s coefficient in first steps of calculation does not have a significant role in

cavern’s wall displacement, but its sensitivity indices in the early loading steps increase

and reduce slightly. Moreover, the coefficient of Maxwell dashpot as a part of constitutive

model which describes the steady state creep phase, during time shows a rising tendency

(Khaledi, Mahmoudi, Datcheva, König & Schanz, 2016). Therefore, it is necessary to be

more careful about obtaining its value in long term analysis, more accuracy rather than

other parameters for this parameter is needed.

4.7.4 The comparative study

The calculated first-order indices Si for different constitutive parameters by Sobol’/Saltelli

and RBD methods are shown in the Fig. 4.11. The results are mostly identical, while the

RBD technique merely needs about 500-1000 model evaluations compared to the 22000

required ones in Sobol’/Saltelli technique. The other comparison can be done between

the calculated sensitivity indices provided by Morris and Sobol’/Saltelli methods. Fig.4.7

illustrates the result of µ∗ considering no-dilatant zone and volume loss in left and right

side, respectively. Besides, Fig.4.5 shows the result of ST i considering no-dilatant zone and

volume loss in left and right side, respectively. Based on the gained results, the importance

ranking of input parameter obtained by Morris method is more visible than ST i. In this

study, Morris method enforced 3000 model evaluations (r) is assumed relatively high
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Table 4.3: Uncertainty representation of the LUBBY2 constitutive parameters

Parameter Description Dimension Boundaries

G∗K Kelvin spring coefficient MPa [3e5 , 6e5]
η∗M Maxwell viscosity coefficient MPa s [0.5e12 , 2.5e12]
η∗K Kelvin viscosity coefficient MPa s [4e9 , 9e9]

0 4h 9h 12h 1d 3d 10d 15d 15d 20d 40d 50d 60d
0

0.2

0.4

0.6

0.8

1

S
T
i[

-]

η∗K
η∗M
G
∗
K

Figure 4.10: ST i index along loading time

but could be chosen less). Although the scale of provided SA measures is different, the

obtained ranking is mostly same. One may conclude that the three input parameters

of Poisson ratio ν, the flow exponent Nf , and the fluidity parameter λ have the least

contribution in the stress state of the different zones in Fig. 3.11 and can be treated as fixed

values for further investigations. The author used these results in Khaledi, Mahmoudi,

Datcheva, König & Schanz (2016) to reduce the dimension of the parameter space to

perform a reliability analysis.

4.7.5 Detecting non-linearity and interaction effects

As mentioned in Sect.4.1, the Morris and Sobol’/Saltelli methods, are both able to pro-

vide some more additional information about the model features. For instance, Fig. 4.12

displays results of five conducted SA at different points around the cavern’s wall in the

frame of a cross plot of σ−µ. Based on the obtained results, transition parameter n shows

the most standard deviation, which indicates the existence of non-linearity/interaction ef-

fects between this parameter and the others. In addition, the almost zero effect of the
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Figure 4.11: Comparison between the RBD and the VB approaches in point a)N1, b)N2,
c)N3, d)N4 and e)N5
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parameters ν, Nf , and λ, which already have been identified as the non-influential ones

is shown, also the regarded σ is negligible. As additional information one can extract

from such a graph is the sign of the input parameter’s effect on the model output. As

clearly shown in Fig. 4.12, n has a negative effect on the stress state of the cavern’s wall.

This is justified based on the definition of this parameter, which assigns the dilatancy

boundary (For more details about the constitutive model see Chapter 2). Moreover, on

the Fig. 4.13 the obtained Si as a function of the ST i-Si is depicted. According to the

Fig. 4.13, one can identify the ratio between the first-order effect and the interaction ef-

fects, as it shows a large interaction effect for parameter n. Also, comparing the graphs

in Figs. 4.13 and 4.12 enables the designer to distinguish the non-linearity and interaction

effects involved in the model, since the right one just reveals the interaction effects and

the left one includes both. For example, parameters n and a1 show the same interaction

effect but n has a higher non-linear effect.

4.8 Metamodelling

The main aim of metamodelling is to reduce the computational costs of high-dimensional

stochastic problems, which require hundreds of deterministic model evaluations. For

instance, the execution time of a comprehensive numerical model of a rock salt cavity,

considering excavation and operation phases is relatively high.

In general, any probabilistic analyses as global sensitivity analysis technique one needs

to generate a relatively large number of the input-output set of data. Thereupon, in the

case of comprehensive computational models, performing such analyses seem infeasible.

For instance, in variance-based methods, which are developed based on Monte Carlo

simulation, one need to run a large number of the computational model. Therefore, using

such numerical models that explained in Chapter 3, which is computationally expensive,

makes such analysis infeasible. Consequently, a proper solution to overcome this issue

is utilising a metamodel to substitute the original numerical model. A metamodel is

an analytical model that replaces the original simulation with sufficient accuracy and

evaluates the behaviour of a multivariate complex system while it is computationally

inexpensive and plausible, see Fig. 4.14.

Among the other well-established methods, Proper Orthogonal Decomposition with Ra-

dial Basis Function (POD-RBF) is carried out in this thesis. Radial Basis Function were

first used by Hardy (1971) for multivariate data interpolation. He proposed Radial Basis

Functions as approximation functions by solving multi-quadratic equations of topogra-
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phy based on coordinate data with interpolation. Buljak (2010) developed POD-RBF

to make a metamodel for scattered points in multidimensional space. This model uses

orthogonality in the vector spaces to reduce the dimension of the problem and simplify

the approximation procedure. POD-RBF firstly decompose the matrix of the system re-

sponse into a reduced space, and then the radial basis functions interpolate the reduced

amplitude matrix. For generating a metamodel, a limited number of computations have

been done with the original model and their input-outputs use as input data for training

metamodel.

In order to develop a POD-RBF metamodel, firstly 100 uniformly distributed sample sets

of the input parameters are generated, and subsequently, the FE numerical model is run

for each sample set and the relevant output is recorded. After that, the generated input-

output sets, are used for constructing the metamodel. To examine the accuracy level

of the metamodel, the original numerical model is executed to determine the DF value

in the point N4 for 20 additional input parameter sets, and the corresponding results

are compared to the outputs obtained by the metamodel. Here, two error measures,

namely the coefficient of determination, and the Normalized Root-Mean-Square deviation,

are employed. The error measures known as the model coefficient of determination and

denoted as R2 is equal to the fraction of the variance of the original data which come from

our model, see Eq. 4.4. where ŷi is the regression model prediction and R2 ∈ [0, 1]. It

should be mentioned that for a perfect approximation R2 reaches 1 and NRMSD reaches

0. For instance, the computed error measures for point N4 are estimated as follow

R2 = 0.98858, NRMSE = 0.001791. (4.21)

4.9 Conclusion

In the framework of system performance analysis, SA techniques may provide an assess-

ment of the uncertainty involved in the system outcomes, and identify the sources of

this uncertainty. In this chapter, different SA methods and techniques, their correspond-

ing results and settings are briefly introduced. A guideline to select a proper technique

based on the attributes of the model including complexity, computational costs and the

number of parameters involved is presented. The decision tree introduced may guide the

user to select the most appropriate technique among the others. Since the expensive SA

methods as Sobol’/Saltelli provide measures to have a better understanding of the system
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behaviour, sometimes the designer may afford the expensive methods to achieve such a

sophisticated knowledge. In the following, different global SA methods are applied on a

geotechnical model, namely an underground energy storage in rock salt. The particular

level of construction and the massive geometry of such an underground structure con-

front the design process with a significant amount of uncertainties. Hence, to reduce the

involved uncertainties through model calibration or further observations, conducting SA

techniques is appropriate. The performance of different methods and the conformity of

the provided results are discussed. The study reveals that the applied SA methods assign

same parameter importance rankings in the considered simulation model. Furthermore,

it can be concluded that the RBD, which requires less computational effort rather than

Sobol’/Saltelli technique, provides a suitable option for Si. Moreover, the comparative

study demonstrated that Morris method might offer an appropriate alternative for the ST i

as a variance-based index. It also can detect the positive or negative effects of parameters

and non-linearity and interaction effects.



5 Probabilistic Analysis

5.1 Introduction

In this chapter, different methodologies to perform a probabilistic analysis are presented.

In general, a non-deterministic analysis is utilised by designers to ensure the decision

makers about a certain range of the serviceability and stability of the system of interest.

Moreover, the reliability design concept alongside the engineering design codes can be

employed to assess the design parameters’ values in a way that the system safety is

warranted.

The interested level of reliability for each specific system is subject to different issues like

economic and social benefits or costs. However, the performance of each system during

its lifetime can be defined through opposite terms as load-strength, force-resistance or

demand-capacity. The difference between capacity and demand, which is usually referred

to as the safety margin, determines the state of the system. Without loss of generality, the

term of reliability can be defined through the following description presented by Kottegoda

& Rosso (2008).

”Reliability is the probabilistic assessment of the likelihood that a system will perform

adequately for a specified period under known operating conditions.” On the other hand,

the reliability of a system is defined as the probability of non-failing in fulfilling the

demands, over a predefined time interval.

To assess the safety state of a system, one needs to determine the resistance of the structure

and the maximum forces that a system may experience. The values of the maximum forces

and the strength of a structure are not constant during its lifetime. Apart from this, the

prediction process of these values is subject to uncertainties. A standard engineering

solution to overcome this issue is utilising the safety factors. The determination process

of safety factors mainly relies on the previous experiences on the behaviour of similar

systems. Hence, a significant level of uncertainty can be involved in their values, that

considering them leads to conservative (and probably expensive) designs. Thereupon, the

probability of a system ability to properly perform under the imposed burden requires

83



84 5 Probabilistic Analysis

probabilistic analyses to take into account the associated uncertainties with the considered

values for model parameters. Accordingly, the response of the system for each set of the

input factors’ value (from the assumed range of the variation) may take place in the safe

or the failure state. The boundary between these two states is known as the limit state

surface, denoted as Gx. The function of this surface is formulated such that Gx > 0

indicates the safe state and Gx ≤ 0 determines the failure state. The probability that a

system does not accomplish the requirements PF is defined as

PF = 1−RF = P (Gx < 0) =

∫

Gx<0

fx(X)dx (5.1)

where RF , as the corresponding probability of non-failure states, indicates the reliability

of the system. fx(X) is the joint probability density function of the relevant demands

and resistance parameters X = (x1, ..., xk). The performance function denoted as Gx =

G(xl, x2, ..., xk), is the mathematical relationship between these variables. The failure or

the limit state surface can then be defined as Gx = 0. A schematic representation of

a simple system with two normally distributed parameters and the related limit state

surface is illustrated in Fig. 5.1.

Every probabilistic analysis technique is designed to provide various information about

the system of interest. For instance, it may calculate the statistical moments of the system

response, or the failure probability and the reliability index, accordingly. The reliability

index of a system, denoted by βr, is defined as the ratio between the mean and standard

deviation of the safety margin of the system (Baecher & Christian, 2005). On the other

hand, βr is the number of standard deviations between the mean value of the safety margin

and its critical value (see Fig. 5.2).

PF = 1− Φ(βr) = Φ(−βr) (5.2)

where Φ(.) denotes the standard normal cumulative probability. To perform a reliability

analysis, one needs to calculate the integral of Eq. 5.1. However, the joint probability

density function of the random variables fx(X) is practically impossible to obtain and

subsequently, directly evaluating the regarded integral is difficult. However, many tech-

niques and methods are developed to accomplish a reliability analysis. Li et al. (2015)

divided these methods based on their approaches into two main categories.

i) There are methods that approximate the limit state surface by a Taylor series expansion

(either first or second order) (Ditlevsen & Madsen, 1996; Hasofer & Lind, 1974). Many

studies have been utilised such methods in structural reliability problems, e.g., Rackwitz
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Figure 5.1: Reliability analysis concept

& Fiessler (1978); Wang & Grandhi (1996); Zhao & Ono (1999). A collection of formulae

represents the First-Order Reliability Method (FORM) that approximate (linearise) the

performance function Gx by the first order Taylor expansion. One may mention the

name of First-Order Second-Moment (FOSM) and Advanced First-Order Second-Moment

(AFOSM) methods (Hasofer & Lind, 1974) as the members of this class of methods. While

the FOSM ignores the information on the distribution of random variables, in AFOSM,

the distributional information is appropriately used (Haldar & Mahadevan, 2000). In

the AFOSM (a.k.a. Hasofer-Lind method), the assessment of the reliability index is

mainly based on the transformation/reduction of the problem to a standardised coordinate

system.

Employing the first order Taylor expansion can fulfil nearly all practical needs, and its

numerical accuracy is sufficient. Considering that a second-order expansion of the limit

state surface can approximate the limit state surface more accurately than a first-order

expansion (Fiessler et al., 1979), Second Order Reliability Methods are developed and

employed (Breitung, 1984; Breitung & Hohenbichler, 1989; Köylüoglu & Nielsen, 1994).

The concept and calculation procedure of this class of methods are simple, and they also

were observed to be efficient in many previous studies. However, results presented by

Valdebenito et al. (2010) indicate that approximation methods may be inappropriate for

treating high-dimensional, non-linear problems.

ii) The second class of methods for estimating the failure probability are collectively

referred to as simulation-based methods. The crude Monte Carlo simulation (Rubinstein,

2008), important sampling methods, and subset simulation belong to this class. Crude
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Figure 5.2: Probability density function of system response and safety margin

Monte Carlo uses statistical averaging over random samples generated from the probability

density function of the parameters to evaluate PF . It is a well-known and robust procedure

to address models of different complexities. The Monte Carlo simulation is employed

widely in the geotechnical field to conduct reliability analyses, Tang et al. (1976); Phoon

& Ching (2014); Miro et al. (2015).

Importance sampling schemes are developed to make results arbitrarily exact at the ex-

pense of some more numerical effort. Shinozuka (1983) introduced the importance sam-

pling concept to the reliability community. The basic idea of importance sampling method

was choosing an importance sampling distribution to generate samples that lead to failure

more frequently. Successful applications of this method to various engineering problems

have been reported in Schuëller & Stix (1987), Bucher (1988) and Au & Beck (1999).

Rosenbluth (1975) proposed the point estimate method, a simple method to assess the

moments of the performance function by evaluating it at a set of specifically chosen dis-

crete points. This method requires that the performance function is evaluated for a vast

number when the number of uncertain parameters is large.

For efficiently computing small failure probabilities encountered in civil engineering, Au

& Beck (2001) developed the subset simulation as an advanced Monte Carlo simulation

method. This approach expresses a small failure probability as a product of larger condi-

tional failure probabilities and channelises the problem of simulating a rare failure event

into several problems that involve the conditional simulation of more frequent events. To
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generate the conditional samples, the Markov chain Monte Carlo simulation is used. A

detailed description of this method is presented in Sec. 5.2.1.

In the following, the crude Monte Carlo and subset simulation techniques are presented

in detail and applied to the finite element computational model of a rock salt cavity

presented in Sec. 3.2.

5.2 Monte Carlo Simulation

The Monte Carlo simulation can be regarded as a well established and the most common

method in probabilistic studies. The Monte Carlo simulation which is named after the

gambling complex in the city of Monte Carlo in Monaco is an easy to use method even

for those engineers with basic statistical knowledge (Fishman, 1996). Nevertheless, the

Monte Carlo simulation is a robust method that its accuracy can be assured regardless

of the complexity of the system (Hammersley, 1960; Hammersley & Handscomb, 1964;

Rubinstein, 2008). Its accuracy can be easily adjusted with the adequate number of model

simulations. Also, this method is not affected by the number of involved input variables,

which is beneficial in large models. In this approach, the failure probability in 5.1 can be

rewritten as

PF =

∫
IF (X)fx(X)dx (5.3)

where the indicator function IF (X) is a Boolean description of the system state

IF (X) =





0 system is safe,

1 system failed.
(5.4)

The Monte Carlo simulation performs random sampling and conducts a large number of

model calculations (N). In each sampling process, the possible values of the input ran-

dom variables X = (x1, x2, ..., xk) are generated according to their distributions. System

outputs corresponding to the different sets of random parameters are calculated. Then,

the system state is evaluated through the performance function of Gx. With a number

of model evaluations, a set of samples of output variable Y are available to estimates the

characteristics of the system output. The failure probability can be regarded as an ex-

pectation value of IF (X). Accordingly, the PF is estimated by the fraction of the number

of samples that lead to failure, therefore

P̂F =
1

N

∑
(IF (X)) =

Nf

N
, (5.5)
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where Nf is the number of samples that derive the performance function as Gx ≤ 0.

Hereafter, the estimated value for the failure probability (P̂F ) is denoted by PF , as well.

The required number of samples (N) to achieve a given accuracy is inversely proportional

to the failure probability (Au & Beck, 2001). The accuracy of the failure probability

estimated by Monte Carlo simulation can be assessed by the following equation proposed

by Ang & Tang (2007)

ˆCOVF =

√
1− PF
NPF

≈ 1√
NPF

, (5.6)

where ˆCOVF is the coefficient of variation of the estimated PF . Smaller values of COVF

point out more accuracy in the estimation. Based on Eq. 5.6, the required computation

time for a given COVF , can be calculated as

N ≈ 1

COV 2
F .PF

⇒ tMC ≈
t0

COV 2
F .PF

, (5.7)

where t0 is the required time for a single model evaluation. Hence, in spite of being

computationally robust and applicable for complex models, it is computationally expen-

sive for reliability analysis, because the higher the reliability is, the larger the number of

needed simulations (i.e., a large value for N). In other words, small failure probabilities

corresponding to rare samples which lead to failure (very small hatched area in Fig. 5.1).

Thereupon, conducting a reliability analysis in such cases requires many samples and

model evaluations before such a rare failure sample happens. Variance reduction schemes

as importance sampling (Shinozuka, 1983) or subset simulation are developed to subject

this issue.

On the other hand, Monte Carlo simulation can be impractical when the simulation

model is expensive to execute (i.e. t0 is large). Utilising approximation methods as it has

been introduced in Sec. 4.8 and methods as AFOSM and SORM which uses Taylor series

expansion to provide a rough estimate of the first two statistical moments (mean value

and variance) of the system response, can address this issue (Au & Wang, 2014).

5.2.1 Subset Simulation

As mentioned previously, the number of the numerical simulation runs required to achieve

a given probability of failure (PF ) is proportional to 1/PF . Hence for a small failure

probability, a huge number of numerical simulations is needed. Subset simulation is an

advanced Monte Carlo simulation method that combines the conditional probability and

the Markov chain Monte Carlo (MCMC) method to calculate small values of probabilities
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by a few number of deterministic model executions. This methodology was developed

by Au & Beck (2001). The subset simulation method is based on a simple idea that

the failure probability of a rare event can be represented as the product of some more

likely conditional failure probabilities. Different steps of conducting the subset simulation

method, presented by Au & Wang (2014), are illustrated in Fig. 5.4.

The efficiency of the subset simulation method in estimating small failure probabilities

with much less computational effort made it a widely used method in engineering reli-

ability analysis (for instance see Au & Beck (2003b,a); Schuëller & Pradlwarter (2007);

Hsu & Ching (2010); Mahmoudi, Khaledi, König & Schanz (2016)). Ahmed & Soubra

(2012a) combined the SS approach with the Collocation-based Stochastic Response Sur-

face Method to provide information about the probability density function of the system

response and the contribution of each uncertain input parameter in the variability of this

response. Also, Li et al. (2015) developed the generalised Subset Simulation approach

to estimate the failure probabilities of multiple stochastic responses using a single run of

Subset Simulation. Ching et al. (2005) and Katafygiotis & Cheung (2007) also proposed

different variants of the subset simulation.

Consider a failure event F defined by the condition Gx ≤ 0, where Gx is the perfor-

mance function, and let s1, ..., sm, ..., sZ be a sample of Z realisations of a vector s, where

s is composed of k random variables. In the subset simulation method, the space of

uncertain parameters is divided into l levels with an equal number of Zs realisations

(s1, ..., sm, ..., sZs) in each level. A sequence of nested failure regions F1, ..., Fj, ..., Fl of

decreasing size are defined where F1 ⊃ ... ⊃ Fj ⊃ ... ⊃ Fl = F . An intermediate failure

region, Fj can be defined by G < yj, where yj is an intermediate failure threshold whose

value is larger than zero. Thus, there is a decreasing sequence of positive failure thresh-

olds y1, ..., yj, ..., yl corresponding to F1, ..., Fj, ..., Fl, respectively. It should be noted that,

y1 > ... > yj > ... > yl = 0. An intermediate level, j contains a safe region and a failure

region defined on a given failure threshold yj. The failure probability corresponding to

the intermediate level of j is calculated by

P (Fj+1|Fj) =
1

Zs

Zs∑

m=1

IF j(sm), (5.8)

here IFj
(sm) : Rn → [0,1] is an indicator function, which is equal to one if the system

output, related to the vector of sm, is located in the failure region with respect to Fj,

otherwise IFj
(sm) = 0. The first Zs realisations are generated using the Monte Carlo

simulation methodology according to a target PDF.
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The concept of the subset simulation approach is schematically illustrated stepwise in

Fig. 5.3 for the case of a bi-dimensional problem. Filled symbols with the same colour

represent safe samples in each conditional levels, and the others are located in the failure

zone, which are used as seeds to generate the samples of the next level. In order to

compute the failure probability in this study, a prescribed conditional failure probability

P (Fj+1|Fj) is considered for all levels and yj in each level is evaluated, separately. In the

following, the values of performance functions for each sample are calculated and sorted

in ascending order. Subsequently, the ratio between the number of realisations for which

G < yj and the number of samples Zs is equal to the prescribed value of the conditional

failure probability, yj will be the intermediate threshold (Ahmed & Soubra, 2012b). In

other words, yj is equal to the value of the prescribed value of nth component in the

ascending order,

n = (P (Fj+1|Fj)Zs) + 1. (5.9)

In the next step, the parameter sets corresponding to those Zs × P (Fj+1|Fj) realisations,

which are located in the failure zone of Fj, are used as seeds in MCMC analysis. Seeds gen-

erate Zs new samples for the next level of subset simulation. This procedure to generate

new levels of intermediate failure regions is repeated up to reaching yj ≤ 0.

The failure probability of the failure region F , denoted as PF , is calculated from the

sequence of conditional failure probabilities

PF = P (F1)
l−1∏

j=1

P (Fj+1|Fj), (5.10)

where l is the number of levels required to reach the limit state surface.

5.2.2 Modified Metropolis-Hastings

The Markov chain Monte Carlo methodology generates efficient random samples according

to an arbitrarily given probability distribution. This method has been utilised in statistical

estimation problems, like Bayesian system identification or rare events simulations. One of

the well-known algorithms to carry out the MCMC methodology is Metropolis-Hastings

(Metropolis et al., 1953; Hastings, 1970). This algorithm proceeds by generating new

sequences of the Markov chain from a proposal distribution conditional (q(.|x(h))) on

the current samples x(h). Then, it accepts or rejects these new samples with a certain

acceptance probability which is based on the current and the proposed state. Fig. 5.5

shows the steps of a modified Metropolis-Hastings algorithm, suggested by Santoso et al.
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Figure 5.3: Illustration of the main steps of subset simulation approach
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(2011). In order to obtain the next sample x(h+1) from x(h), a candidate sample x(∗) from

a proposal PDF is generated, firstly. Then, factor B is calculated,

B =
P (x(∗))q(x(h)|x(∗))

P (x(h))q(x(∗)|x(h))
. (5.11)

If B ≤ 1, then x(h+1) = x(∗), otherwise the first step is repeated to generate a new

candidate. Afterwards, G(x(h+1)), i.e., the performance function for x(h+1) is evaluated.

In case G(x(h+1)) < yj, which means x(h+1) is located in the domain Fj, x
(∗) is accepted

as the new sample. Otherwise, x(∗) is rejected and x(h+1) = x(h).

According to the suggestion made by Santoso et al. (2011), in this study, the target

probability distribution is assumed to be Gaussian, and the proposal PDF was chosen to

be uniform.

5.2.3 Error Assessment

In this section, the formulas that assess the error associated with the subset simulation

probability estimation is presented. As in many other error assessment techniques, here

the coefficient of variation is regarded as the error measure. COVPF
depends on the

correlation among the MCMC samples within a given level. In this thesis, the following

approach which was introduced by Au & Wang (2014) is employed.

For the level i it is denoted by COVFi
and given by

COVFi
=

√
1− Pc
PcZs

(1 + κi), Pc = P (Fj+1|Fj), (5.12)

where κi indicates the correlation among the MCMC samples at the level i.

κi = 2
Zsc−1∑

k=1

(1− k

Zsc
)ρi(k) ∀i = 2, ..., l, (5.13)

here Zsc = Zs/Zc. It is assumed that at each intermediate level, Zc = PcZs a Markov

chain is developed, each having Zs/Zc samples. It should be noted that the value of

κ1 = 0, and the error for the first level should be calculated based on the formulation of

the COV of the Direct Monte Carlo in Eq. 5.6 (Ang & Tang, 2007).

Here, ρi is the correlation coefficient of samples along a chain at k steps, where IFi
(θ

(i)
j,k) :

k = 1, ..., Zt/Zc, and θ
(i)
j,k denotes the kth sample along the chain started from the jth seed
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at the ith simulation level (Au & Beck, 2003a).

ρi(k) ≈ 1

Pc(1− Pc)

[
1

Zc(Zsc − k)

[
Zc∑

j=1

Zsc−k∑

r=1

I(G
(i)
j,r < 0)I(G

(i)
j,r+k < 0)

]
− P 2

c

]
(5.14)

Therefore, one can evaluate the coefficient of variation of the probability failure value

using,

COVPF
=

l∑

i=1

COVFi
(5.15)

The scaling of the COVPF
with small PF has significant impacts on the applicability of

the method to rare events. For crude Monte Carlo, COVPF
∝ P−1

f for small PF and so it

grows drastically when a very small PF is expected.

In the following section, this value will be utilised in the finite element computational

model of a rock salt cavity presented in Sec. 3.2 to assess the sufficient number of model

evaluation in each level.

5.3 Numerical example

In the following, results of conducting reliability analysis on the typical rock salt cavern

described in Sec. 3.4, considering an elasto-viscoplastic creep model in Sec. 2.3 is presented.

5.3.1 Uncertainty propagation

After introducing the governing constitutive model presented in Sec. 2.3, the distribu-

tion of the associated uncertainties for each input parameter should be described. The

probabilistic modelling of geotechnical parameters is usually carried out by taking into

account the uncertainties of material properties using random variables or random fields

modelling. In this chapter, the quantity of the constitutive parameters is considered to

be constant within the entire rock media which is regarded as homogeneous host rock.

This assumption can be justified by this fact that salt dome formations include a very

little amount of impurities, and can be assumed nearly homogeneous. Accordingly, the

existence of any heterogeneity or spatial correlations is neglected. The uncertain input

parameters which are modelled as random variables are characterised by their statisti-

cal moments, the mean value and standard deviation, besides their probability density

functions.
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Since there is not enough information available about the variability of these constitutive

parameters, three different probabilistic scenarios, optimistic, neutral and pessimistic are

defined to represent different possible circumstances. In the optimistic scenario, the con-

struction site is assumed to be well-known, which could be because of the high number of

in-situ and laboratory experiments carried out. In the neutral scenario, we assume that

there is an acceptable amount of explorations and experimental tests about the target

site. While for the pessimistic scenario the variation of the parameters is assumed to be

higher than the previous scenarios, because of a lack of test and observation data.

The minimum internal pressure, which has a key role in the mechanical stability of the

rock salt cavern, may vary due to imperfections in operating and monitoring facilities and

heat transfer between the rock and gas, among other factors. Therefore, the reliability-

based design approach is utilised to quantify its reliable value in the long-term loading

protocol.

In the case of long-term loading, in which the internal pressure is considered as the main

variation parameter, various scenarios of uncertainty can be linked to the equipments’

accuracy level that controls the internal pressure. All the regarded independent uncer-

tain parameters are assumed to vary according to their statistical moments, which are

provided in Table. 5.1. The uncertainties of these parameters are modelled by normal

probability density functions distribution. The minimum and maximum values of the un-

certain parameters are chosen based on previous experiences (Hansen et al., 1984; Desai &

Zhang, 1987; Sane et al., 2008; Guo et al., 2012) and engineering judgement. The values

corresponding to the Maxwell dashpot coefficient are chosen based on Heusermann et al.

(2003) and Hou (2003).

5.4 Non-deterministic analysis

As mentioned previously in Sec. 3.6.1, the deviatoric stress, which can be induced by

different internal pressures and in-situ stresses of the rock around the cavities, leads

to creep deformation. A low internal pressure value may cause dilatancy. Because of

dilation, the mechanical properties of the host rock can change drastically, which may

initiate microcracks. In some cases, a widened microcrack network by dilatancy may cause

leakage of the stored product in the cavity. Thereupon, those internal pressures leading

the stress state to locate above the C/D line (namely dilatant zone) can be considered as

unsafe states. Hence, the C/D line is considered as a failure criterion.

Gs = DFu −DFp, (5.16)
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Table 5.1: Uncertainty representation of the input parameters

Parameter Description Dimension Mean
COV(%)

Pessimistic Neutral Optimistic

E Elastic modulus MPa 22000 20 15 10
ν Poisson Ratio [-] 0.27 10 5 5
n Transition parameter [-] 3 20 15 5
N Flow exponent [-] 3 15 15 5
µ Fluidity parameter s−1 2.5e-12 15 10 5
a1 Hardening parameter MPa(2− n) 0.2e-4 15 10 5
κ Ultimate parameter [-] 0.0975 15 10 5
η Hardening parameter [-] 0.8 20 10 5
η∗M Maxwell coefficient MPa s 2e12 15 15 10
Pi Internal pressure MPa 5.5 20 10 5

where Gs is the performance function related to the dilation criterion, DFu is the allowable

value in the system, and DFp is the response of the system. As mentioned before, the

cavern’s volume loss is also considered as a probable failure mode, and hence, this failure

mode is presented by the performance function Gv

Gv = V Lu − V Lp. (5.17)

The prescribed tolerable volume convergence in this failure mode is presented by V Lu,

and the amount of volume loss due to the applied parameters is given by V Lp. In addition,

another performance function as Gl for the minimum internal pressure is defined as

Gl =
Pu
Pp
− 1, (5.18)

here, Gl and Pu are the performance function of the internal load and the admissible

minimum internal load, which may not cause dilation in the cavern vicinity. Pp is the

amount of the imposed internal pressure. The variability of the system responses, as a

result of the uncertain input variables, is described by assigning the probability density

functions. To accomplish this, the probability distribution of the system response is

evaluated by investigating the related probability density functions.

For instance, Figs. 5.6a to 5.6d present the PDFs of the value of DF for three different

scenarios of parameters’ value expectation, for the nodes N2, N3, N4, and N5 in Fig. 3.11,

respectively. As an example, the probability density functions of the obtained DF values
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which represents the no-dilation criteria are illustrated in Fig.5.6c for point N4, when the

internal load is considered as the variable in the long-term loading protocol.

Fig. 5.6 emphasises that, varying the dispersion of the input parameters, which is applied

in the present work by three different probabilistic scenarios changes the dispersion of

the model responses, significantly. This means that having good knowledge about the

involved input variables such as those considered in the optimistic scenario, makes the

PDF of the model output narrower (i.e., the variation in the system response becomes

less). Investigating the generated PDFs of the DF for all observation points around

the cavern demonstrates that less safety margin against the dilation exists at the points

located at the bottom of the cavern. Also, Fig. 3.16 has already shown that the biggest

values of DF occur in this region, which can be attributed to the high value of the induced

deviatoric stress. For this respect, hereafter, merely the failure probability of point N4

is investigated. In the following, the failure probability of the system versus the failure

criteria defined in Sec. 3.6.1 is calculated. The failure is defined as the exceeding of a

response quantity Y over threshold yt, where the limit state surface is determined as

Gx = yt − Y . Hence, the failure probability P (F ) = P (Y > yt) can be demonstrated as

the value of the Complementary Cumulative Distribution Function (CCDF) of Y at yt.

In each failure mode, different allowable thresholds are defined, and the relevant PF is

calculated using samples from the input space of the uncertain constitutive parameters

presented in Sec. 2.3.

Estimation of failure probability is done by the subset simulation technique. The required

number of model evaluations in each level is determined in the following sections. Also,

a comparative study is conducted in order to verify the obtained outcomes by subset

simulation.

5.4.1 Sufficient number of model evaluation

As we consider the intermediate failure P (Fj+1|Fj) amount in all intermediate levels to be

the same, the corresponding intermediate thresholds depend on the generated conditional

samples and vary in different runs. To ensure that the variations in the sample sets

make no significant differences in the obtained value of PF , the coefficient of variation

of the probability failure value, COVPF
(see Eq.5.7) can be a proper measure. COVPF

may estimate that how accurate is the conducted analysis. For more details about the

procedure of evaluating COVPF
, see Au & Beck (2001).

In order to obtain the optimal number of required sample sizes, different Zs are applied

to calculate the probability of failure, and for each case, the COVPF
is computed. Fig. 5.7
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Figure 5.6: Probability density function of DF around the cavern (long-term loading
protocol)
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represents the considered number of realisations in each level of the subset simulation

versus its corresponding COVPF
. It demonstrates the dependency of the coefficient of

variation of PF on the number of samples. Based on this figure, raising Zs from 1000 to

4000 makes no meaningful change in the COVPF
, thereupon, the number of samples per

level in the present study is chosen to be equal to 1000.

5.4.2 Validation by comparing with Monte Carlo simulation method

The efficiency of the subset simulation methodology is examined by comparing its results

with the estimated PF s using a Monte Carlo-based analysis. The failure probability of

the rock salt cavern’s vicinity, considering no-dilation criteria, is calculated by conducting

both methodologies. The comparison here is conducted for a point located on the bottom

of the cavern, and the failure probability is computed against several prescribed DoUu.

Fig. 5.8 illustrates the obtained results, while in the Monte Carlo-based approach 100,000

samples are used. In the subset simulation method, the corresponding PF is estimated by

generating samples through three levels of intermediate failure probabilities. Thereupon,

the final PF s are calculated by subset simulation using 3,000 realisations. These results

show that, although the computational burden required in the subset simulation approach

is significantly less compared to the Monte Carlo simulation, the differences between the

obtained PF s are negligible.

5.5 Reliability-based design

The CCDF can be used directly for estimating the failure probability that the solution-

mined cavity simulation exceeds for a specified threshold. The obtained CCDFs for three

probabilistic scenarios are illustrated in Fig. 5.9. This figure shows the probability of

failure as functions of the DF thresholds for the cyclic loading protocol.

The PF of the long-term loading protocol, which considers the minimum internal pressure

of the cavern as the only input variable, is calculated by the same procedure as explained

above. In this protocol, the serviceability of the system is regarded as the limit state

by evaluating the volume convergence value. The obtained results presented in Fig. 5.10

demonstrate that by applying different COVs, i.e., different uncertainty variations, the

value of PF changes enormously. In other words, the minimum values of the failure

probability against different failure criteria are observed in the optimistic scenario.
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Figure 5.7: Coefficient of variation of failure probability versus the number of samples
generated per level

Later, the forward simulation model introduced in Sec. 3.4 is used to estimate the min-

imum allowable internal pressure of the cavern for a prescribed set of constitutive pa-

rameters. The minimum allowable pressure is evaluated in a manner, such that in the

first minimum pressure step of loading after the debrining phase, any stress state in the

cavern’s vicinity corresponds to DF > 1. Subsequently, the failure probability of the

rock salt cavern is evaluated. PF versus the minimum allowable pressure inside the cav-

ern is drawn in Fig 5.11 as a function of the thresholds using samples of the uncertain

constitutive parameters.

After determining the PF , one can compute the proper value of the regarded input variable

to satisfy a prescribed level of safety based on reliability analysis approaches, such as

AFOSM. In design codes, the tolerable safety levels are categorised based on the probable

consequences of a failure event. These categories are quantified by the reliability index

values. Reliability index or safety index is denoted as βr

βr = −Φ−1(PF ), (5.19)

here, Φ(.) represents the standard normal cumulative distribution function. For instance,

Eurocode 7 considers the value of βr to be equal to 3.8 for structures with moderate conse-
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Figure 5.8: Comparison between the obtained CCDF computed by applying Monte Carlo
simulation and subset simulation in Point N5

quences in the case of failure (Phoon, 2008). Therefore, the moderate safety corresponds

to a failure probability of 7.2348e − 05. This value is used to determine the appropri-

ate minimum internal pressure as demonstrated in Fig. 5.11. For instance, as shown in

Fig. 5.11 in the optimistic scenario, the applied pressure in a cavity with the prescribed

geometry in Sec. 3.4, may not be less than 6.08 MPa. Otherwise, dilatancy may take place

around the cavern. This approach can be applied to the other probabilistic scenarios as

well, which leads to higher values for the safe minimum pressure, e.g. even to more than

7 MPa in the pessimistic scenario. Tab. 5.2 presents the obtained results for each prob-

abilistic scenario. Moreover, Tab. 5.2 displays the minimum admissible internal pressure

for different assumption for the levels of failure consequences. All the regarded reliability

indices are chosen as proposed in Eurocode 7.

5.6 Conclusion

In this chapter, the stability and serviceability of the rock salt cavern have been explored

considering different failure criteria, namely limited volume convergence and no dilatant

zone. The probabilistic analyses are utilised to describe the involved uncertainties in ma-
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Figure 5.9: CCDF plotted in a logarithmic scale against a range of admissible thresholds
(cyclic loading protocol)
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Figure 5.10: The obtained CCDF due to long-term loading protocol plotted in a logarith-
mic scale against a range of admissible thresholds
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Figure 5.11: Failure probability against dilatancy versus the internal pressure of cavern

Table 5.2: Obtained reliability index βr in different probabilistic scenarios

Consequence of failure βr PF
min. admissible Pi [MPa]

Pessimistic Neutral Optimistic

small 1.3 0.0968 5.72 4.83 6.29
some 2.3 0.01072 5.87 6.46 6.7

moderate 3.1 9.676e-4 5.96 6.69 6.93
great 3.8 7.235e-05 6.08 6.9 >7

terial properties of the rock salt and evaluate the impacts of their propagation. Their

relevant uncertainties have been considered by three scenarios, using different coefficients

of variation. This chapter also presents a computationally affordable reliability analysis

method, called as subset simulation. Subset simulation can address small probabilities

encountered in the practical reliability assessment of the complex systems while analysing

their reliability with classical Monte Carlo-based methods is computationally expensive.

A modified Metropolis-Hastings approach is employed to generate adaptive samples in a

sequence of failure regions. Afterwards, the efficiency and accuracy of the subset simula-

tion were justified by conducting a comparative calculation. Since the minimum internal

pressure of the rock salt cavern governs the safety level of the system against dilatancy,

the minimal allowable internal pressure has been evaluated to assure that no area around

the cavern experiences dilatancy. Moreover, a reliability-based design approach has been
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employed to identify the acceptable minimum internal pressure of the cavern when con-

sidering the uncertainty of the constitutive parameters. It should be noted that this case

study is a synthetic one, nevertheless, the proposed method can be applied analogously

to realistic problems.



6 Random field Analysis

6.1 Introduction

A clear picture of the rock salt characteristics may only appear by gathering different

information sources as laboratory analyses, geotechnical in-situ measurements, and on-

site observations. In practice, for such particular structures which are extended vertically

downwards more than hundred meters from the ground level, only limited experimental

and in-situ data is available. On the other hand, the inherent randomness of natural

materials as rocks causes a wide extent of spatial distribution in their physical properties.

Considering these facts, the measure of involved uncertainties in the rock salt properties

cannot be neglected. Hence, a reliable design procedure cannot rely merely on deter-

ministic approaches. In order to provide an adequately accurate computational model,

stochastic analysis approaches must be utilized, as well. It should be pointed that a strati-

graphic unit may consist of several different homogeneous zones. The graphs provided

by Bräuer et al. (2011); Bornemann et al. (2008), which are derived from creep tests on

two different shafts in Gorleben salt dome (north-east of Germany), indicate the existing

of vertical heterogeneity in creep behaviour of this site (see Figs. 6.1 & 6.2). The present

study considered a one-dimensional (vertical) spatially random field. Bräuer et al. (2011)

shows that creep behaviour is significantly correlated with stratigraphic, fabric properties

and tectonics.

Despite other geotechnical fields of study where the stochastic analyses are well established

(e.g. Phoon (2008); Baecher & Christian (2005)), there are rare studies that investigate

the involved uncertainties in the geotechnical design of rock salt cavities as Roberts,

McCullough, Buchholz & DeVries (2015) and Mahmoudi et al. (2017). In the latter one, a

probabilistic analysis on a compressed air rock salt cavity was performed, using the subset

simulation methodology as a modern Monte Carlo approach. In that study, the involved

input parameters were considered as the random variables, and the defined uncertainty

measure applied to the entire medium and the spatial randomness was neglected.
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Figure 6.1: Assignment of homogeneous zones in shaft 1 (left) and 2 (right) (Bräuer et al.,
2011)
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To represent the real spatial variability of a field variable, a significant amount of infor-

mation must be gathered from the field, which is an expensive or even infeasible project.

Also, if not enough amount of data is gathered then the parameter identification and

design process can be inaccurate. In this regard, a probabilistic analysis concept may be

employed to minimise sampling costs while it is still being able to provide informative

data. For this, random fields are appropriate as models of the spatially distributed uncer-

tainty and they can be utilised to produce probability measures regarding design criteria

(Griffiths & Fenton, 2007). In the random field models, the characteristics of the spatial

distribution of mechanical parameters are simulated as functions of spatial location. In

general, the main attribute of a random field representation is the concept of statistical

dependence between input values in the spatial field. Applications of stochastic finite

element analysis have been initiated in the 1970s (Kiureghian & Ke, 1988). A random

field is defined by its mean and variance which may be spatially constant, or vary as a

function of location to depict the degree of variation in the field. Moreover, the correlation

arrangement in the random field is an important feature.

Various random field generator algorithms are available in the literature, which are shortly

reviewed in Sec. 6.2. Among the others, the series expansion methods can approximate

the random field by a finite sum of products of deterministic spatial functions and ran-

dom variables. In this dissertation, the Karhunen-Loève expansion as a series expansion

method, introduced in Sec. 6.3, is applied to generate random field realisations.

In the following, a typical natural gas rock salt cavern is simulated by finite element

method. Within the numerical model, the rock salt behaviour is described by BGRa

constitutive model (Hunsche & Hampel, 1999), a well-known creep model. In Sec. 6.4 the

numerical model, boundary and loading conditions are presented. Sec. 6.5 presents the

probabilistic analysis of the considered cavity mined in spatially varying rock salt. The

effect of the uncertainties in the input parameters on the system responses is inquired by

carrying out a global sensitivity analysis. In the present thesis, Sobol’s method (Sobol’,

1993) as a variance-based sensitivity technique is employed. After ranking the importance

level of parameters, random field discretisation applied on the most governing one. In the

following, the failure probability of the system considering dilatant behaviour is evaluated.

At the end, a parametric study is conducted to investigate the effect of variations in the

assumed auto-correlation lengths. The obtained results are concluded in Sec. 6.6.
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6.2 Random field discretisation

Because of the differences of mineral ingredients, stress history, and other geological fac-

tors, constitutive parameters of rocks or soils show spatial differences and correlations as

well. The characteristics of the spatial distribution of constitutive parameters can be sim-

ulated as a geological parameter field which exhibits spatial variability. Many studies has

been applied different random field methodologies on civil and particularly geotechnical

problems, among the others one may mention the work of Schweiger & Peschl (2005),

where a slope stability analysis is performed taking into account spatial variability and

using random field theory. Also, Griffiths et al. (2012) used random field, Monte-Carlo

simulations and finite element concepts to evaluate the influence of porosity and void size

on the probability of excessive settlement.

In general, a random field is characterised by its mean, variance, and its correlation struc-

ture. One of the major features of a random field representation of a material is the

concept of statistical dependence between field values at different points, which is known

as the correlation structure (Sudret & Der Kiureghian, 2000). The correlation coefficient

between two points x1 and x2, ρ(x1, x2) is decreasing gradually as the distance is increas-

ing. On the other hand, when the distance between two realisation points approaches

to zero, the material characteristics are identical. It should be pointed out that higher

order moments of random field can also represent its characteristics, but due to difficulties

in estimating them, random field models are often represented by information about the

three mentioned measures. To accomplish this, firstly a relatively simple joint PDF (e.g.,

multivariate normal or lognormal distributions) for the field should be adopted. The

correlation structure is often assumed to be a simple function of the distance between

points.

A continuous random field H(x, ψ) can be defined as a random function that describes

a random quantity at each point x ∈ Ω of a continuous domain Ω ⊂ Rn. ψ ∈ Ψ is a

coordinate in the sample space Ψ. Hence, H(x0, ψ) denotes the random variable associated

with point x0, and H(x, ψ0) indicates ψ0 realisation of the field. As mentioned before,

a random field can be defined by its mean µ(x), variance σ2(x) and auto-correlation

coefficient function that is

ρ(x1, x2) =
CH [H(x1), H(x2)]

σ(x1)σ(x2)
, (6.1)

where CH(., .) is the auto-covariance function. A random field can be discretized by

approximating H(.) by Ĥ(.), described by means of a finite set of random variables {χi,



112 6 Random field Analysis

i = 1,...,n }
Ĥ(x)

Discretisation−−−−−−−→ Ĥ(x) = F [x, χ]. (6.2)

Sudret & Der Kiureghian (2000) classified the most commonly used methods of random

field discretisation into following main groups ,

• Point Discretisation

In this group of methods, the random variables χi are selected values of H(.) at

specific points in a given spatial discretisation (e.g., mesh in finite/difference ele-

ment methods). As example one can name the midpoint method, introduced by

Kiureghian & Ke (1988) where the random field is approximated in each element by

a single random variable at the centre of that element. The Shape Function method

introduced by Liu & Kiureghian (1986), and the Optimal Linear Estimation method

developed by Li & Kiureghian (1993) also can be classified in this category. The

other members of this group are integration point method which is presented in

Brenner & Bucher (1995).

• Average Discretisation,

In these methods, the random variable related to a given χi is calculated as the

weighted integrals of H(.) over a domain Ωe

χi =

∫

Ωe

H(x)ω(x)dΩ. (6.3)

For instance, Spatial average method proposed by Vanmarcke & Grigoriu (1983)

evaluate the random variable related to a given element of the finite element/finite

difference deterministic mesh as the average of random fields over that element. The

weighted integral method developed by Deodatis (1990) can also be classified in this

group. Besides, one can mention the Local Average Subdivision method Fenton &

Vanmarcke (1990) as a commonly used method in geotechnical engineering.

• Series Expansion methods

In the series expansion discretisation methods, the random field is approximated

by an expansion that involves deterministic and stochastic functions. The value

of the random field is calculated on the basis of the coordinates of the point in

deterministic functions. In these techniques, the field is represented as a series

involving random variables and deterministic spatial functions. As examples of

this group of methods, one can mention the Expansion Optimal Linear estimation

method. A comparative review on the above mentioned methods was provided in

Li & Kiureghian (1993), Al-Bittar & Soubra (2013) employed this method (a.k.a.
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EOLE) in a geotechnical application. As commonly used series expansion method,

one can mention Orthogonal Series Expansion method Ellingwood (1994) and the

Karhunen-Loève expansion method. The Karhunen-Loève is utilised in the present

study to discretize the random field and it is briefly described in the following.

6.3 Karhunen-Loéve expansion

We consider H(x, ψ) as random process, when H denotes the expected value of the random

field. The random field can be calculated by the Karhunen-Loéve expansion as follows

Ĥ(x, ψ) = µH +
∞∑

i=1

√
λiφi(x)ξi(ψ), (6.4)

where λi and φi are the eigenvalues and eigenfunctions of the auto-covariance function,

respectively. ξi(ψ) is a vector of standard uncorrelated random variables. µH is the mean

function of the field. It should be noticed here that ξi(ψ) : Ψ → R are the stochastic

variables that represent the random nature of the uncertain parameter. For practical

purposes, the expansion in Eq. 6.4 can be truncated to a given number of terms, M as

follows

Ĥ(x, ψ) ≈ µH(x) +
M∑

i=1

√
λiφi(x)ξi(ψ), (6.5)

where M is the size of the series expansion. However, the eigenvalues and eigenfunctions

λi and φi are the deterministic functions of the Karhunen-Loève expansion. They can be

evaluated as the solution of the following Fredholm integral equation:

∫

Ω

CH [H(x1), H(x2)]φi(x2)dx2 = λiφi(x1). (6.6)

For an one-dimensional Gaussian random field generated in the interval [−a, a], the ex-

ponential covariance function is defined as below,

CH [H(x1), H(x2)] = σexp(−x1 − x2

lx
), (6.7)

where, σ is the standard deviation of the random field, lx shows the vertical autocorrelation

length. Ghanem & Spanos (1991) presented the detailed analytical solution of the integral
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in Eq. 6.6 for an exponential auto-covariance function. In this approach,

λi =
2( 1

lx
)

ω2
i + 1

lx

, (6.8)

and, 



φi(x) = cos(ωix)√
a+

sin(2ωia)

2ωi

for i odd,

φi(x) = sin(ωix)√
a− sin(2ωia)

2ωi

for i even.

(6.9)

Huang et al. (2001) studied the convergence of this approach for different covariance

functions using polynomials (Betz et al., 2014). The choice of the number M of terms

depends on the required accuracy of the considered problem. Sudret & Der Kiureghian

(2000) proposed the following error estimate (err(x)) after truncating the expansion to

M terms,

err(x) = σ2
H −

M∑

i=1

λiφ
2
i (x), (6.10)

where σH is the standard deviation of the random field. Finally, notice that in most

geotechnical problems, the random fields are assumed to follow a log-normal PDF. This

assumption can be adjusted by the fact that a soil parameter cannot take a negative value.

Thereupon, for an exponential random field, log(H) is a normal random field with mean

value µlogH and standard deviation σH given as follows:

µlogH = log(
µ2
H√

σ2 + µ2
) (6.11)

σlogH
=
√

log(1 + COV 2) (6.12)

Ĥ(x, ψ) ≈ exp[µlnE +
M∑

i=1

√
λiφi(x)ξi(ψ)] (6.13)

6.4 Deterministic model of a rock salt cavern

Within this chapter, a gas cavern with the capacity of 368,000 m3 is simulated by an

axisymmetrical numerical model, its casing shoe is assumed to be located in the depth

of 400 m. The shape of the cavern after excavation is idealised as a cylinder with the

height of 150 m and 60 m diameter. The floor and roof of the cavern are considered as
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semi-spheres with 30 m radius. Fig. 6.3a shows the geometry and boundary conditions of

this cavity in detail. The considered mesh discretisation is also shown in Fig. 6.3b. The

uniform load at the top of the model substitutes the overburden weight. In order to model

the solution mining procedure, the entire excavation phase is simplified by reducing the

internal pressure of the cavern to the minimum gas pressure (First discharge phase) in

a time interval of 300 days. In this study, the minimum inner pressure of the cavity is

assumed to be equal to 4 MPa. In our simulation, the temperature of intact rock salt is

assumed to be equal to 50 ◦C. The thermal boundary condition of the wall of the cavity

is decreased during the discharge phase to 30 ◦C (for more details about the variation of

thermal condition see Khaledi, Mahmoudi, Datcheva & Schanz (2016a)).

In this study, the creep behaviour of the rock salt is modelled on the basis of the BGRa

constitutive model (see Sec. 2). The mechanical stability of storage cavities is the most

important issue which should be assured in an accurate geotechnical design. Therefore,

the dilatant zones which can be initiated by a specific stress state in rock salt should be

avoided. The dilatancy boundary, which is defined by the beginning of the irreversible

volumetric expansion, can be considered as a criterion which divides the stress space into

compression and dilatancy regions. As mentioned in chapter 2 dilatancy boundary, known

as compression/dilation (C/D) boundary can be identified on the basis of experimental

data (for more details about different C/D boundaries, the reader is referred to Mahmoudi

et al. (2015a)). In the present chapter, Desai C/D boundary Desai & Zhang (1987) is

used as no dilation criterion. In order to determine whether a region in the simulated

rock salt cavity encountered dilatancy or not. In this regard, the quantity of DF defined

in 6.3 is employed.

DF =

√
J2

Jdil2 (I1)
. (6.14)

where Jdil2 (I1) denotes the second stress invariant of C/D boundary corresponding with

the value of first invariant (I1) in each observation point. When DF < 1, the stresses

are inside the compressibility domain and opening of micro-cracks does not occur and

subsequently, damage does not progress. In contrary, when DF ≥ 1, the cavern may

experience long-time failure due to the damage progress.

In the next step, the finite element numerical simulation of the typical cavern is conducted.

Although in real cases the designer must assure that no-dilatant region around the entire

cavern will take place, here, the considered observation points are limited. The level of

one-third of cavern’s height from its bottom is generally treated as a benchmark region
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R

(a) (b)

Figure 6.3: (a) Representative geometry and boundary conditions of the salt cavern model
and (b) Finite element mesh discretisation

in measurements and numerical simulations as well. Hence, in this study the DF factor

is evaluated in the region of R, illustrated in Fig. 6.3a.

It should be stated that the method of the Karhunen-Loève can cope with domains of

arbitrary geometric mesh, different from the FEM mesh. However, the size of a given

element in the deterministic mesh depends on the auto-correlation distances of the rock

properties. Kiureghian & Ke (1988) suggested that the length of the largest element of

the deterministic mesh should not be less than half of the auto-correlation distance in that

direction. In order to respect this criterion, the geometrical model is vertically divided to

65layers, with a specific random value assigned to each layer (with 10meter thickness).

6.5 Probabilistic results

Before generating the random field, the most important input parameter which makes the

largest contribution to the variation of model response is identified by conducting a global

sensitivity analysis. The variance-based technique for evaluating the sensitivity indices of

input parameters is proposed by Sobol’ (1993). In this thesis, Sobol’s method (as a Monte

Carlo based implementation) is utilised to evaluate the sensitivity measures of different
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constitutive parameters (see Sec. 4.6). It should be mentioned that the sensitivity analysis

is conducted on a random variable homogeneous model. Tab. 6.1 represents the considered

range of variation for each input variable. All the input variables follow a lognormal

probability distribution function. Fig. 6.4 depicts the evaluated total-effect sensitivity

index (ST i) for each constitutive parameter. The most influential input parameter on the

stress-state of the cavern’s wall against dilation is u. Hence, all parameters but u are

fixed to their mean values, and the variable of u is discretised as a random field. The mean

value and coefficient of variation of parameter u are respectively µ = 4 and COV = 10%,

and follows a lognormal probability density function. Fig. 6.5 shows a typical random

field realisations of the variable u for two different auto-correlation distances. For larger

values of auto-correlation distances, the model tends to a homogeneous field, while less

auto-correlation lengths limit the correlations in a given simulation to smaller zones. In

general, for a specific auto-correlation length, layers which are very close together tend to

have similar u values and express a higher correlation.

As mentioned earlier, the size of the Karhunen-Loève expansion M will effect on the

accuracy of the approximated random field Ĥ. Fig. 6.6a depicts the estimated error of

random field approximation versus the assumed M value for different auto-correlation

lengths. The error estimation converges to less than 5%, if M ≥ 200. In this study,

M is assumed to be equal to 200 terms to ensure the accuracy level of random field

approximation.

The crude Monte Carlo simulation is a well-established methodology to evaluate the

probability of failure which has been used for many decades. As conducting a Monte

Carlo simulation requires thousands of model evaluation and each run of the numerical

model in this study takes more than two hours, employing Monte Carlo seems not feasible.

In order to address this drawback, the subset simulation technique, introduced previously

in Chapter 5 is employed.

The probability analysis here is conducted for the region R in Fig. 6.3a and the fail-

ure probability for different auto-correlation lengths (ly) is computed against DF = 1 .

Fig. 6.6b illustrates the obtained results. In addition to different spatial variability sce-

narios, we also conduct a homogeneous simulation, where the constitutive parameters

are assumed to be random variables. As Fig. 6.6b illustrates, with decreasing the auto-

correlation length in random field discretisation, the probability of encountering a dilatant

region at the considered observation point increases. Although in real cases, a local dila-

tant zone may not mainly endanger the stability of the entire structure, but in our case,

we considered the no-dilatant region as the failure criterion, which is conservative.
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Table 6.1: Parameters’ value of BGRa constitutive model

Elastic Parameters Creep Parameters Thermal Properties

E [GPa] ν [-] A [s−1] u [-] Q [kJ/mol] αt [1/ ◦C]

[19 - 3] [0.25 - 0.35] [0.1e-5 - 0.5e-5] [3 - 5] [40000 - 70000] [3e-5 - 5.5e-5]

E ν αt A u Q
0

0.2

0.4

0.6

0.8

S
T
i
[-

]

E
ν
αt
A
u
Q

Figure 6.4: Estimation of total effect sensitivity index ST i, regarding FS

6.6 Conclusion

The inherent randomness of natural materials like rocks and soils causes a wide extent

of spatial distribution in their physical properties. Thereupon, the spatial variability and

consequently the induced uncertainty, have to be considered in the complex geotechnical

problems. In this thesis, the random field method is applied in a probabilistic analysis of

a gas storage cavern in the rock salt. A random field discretisation of constitutive param-

eters of the BGRa creep law using Karhunen-Loéve is conducted. The failure probability

of a rock salt cavity against the no-dilatant criterion is calculated for different spatial

variability scenarios to present the effect of the auto-correlation lengths on the safety

measures of the system against dilation. The obtained failure probabilities are compared

with the corresponding results considering homogeneous rock in a random variable anal-

ysis. The comparison represents the necessity of considering spatial variability in the

material properties.
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Figure 6.5: Random field realisations of the parameter u for auto-correlation distance (a)
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Nowadays, the energy community undergoes a major transmission time from fossil/nuclear

fuels to renewable energy sources. Thereupon, due to the fluctuating nature of the pro-

duced electrical energy, it should be stored in rock salt caverns for short and long terms

to balance out the energy generation and consumption, within CAES or hydrogen storage

projects. Due to the daily or weekly charge and withdrawal cycles of pressurised gas, the

surrounding rock salt undergoes cyclic loading. The present thesis proposed an iterative

study that consists of experimental investigation, constitutive, and numerical modelling to

provide a precise analysis of the complicated stress strain behaviour of rock salt under this

loading condition. In particular, this dissertation intends to study the rock salt behaviour

under such loading conditions through a numerical study. Furthermore, it considers the

effects of the corresponding uncertainty in the modelling procedure as well.

Analogous to most geotechnical engineering concepts, a numerical analysis is conducted

to evaluate the behaviour of rock salt cavities. In this regard, the excavation and different

operation scenarios are simulated using the finite element analysis approach. A study has

been carried out to find the impact of different depths of location on the behaviour of the

cavity. The obtained results may provide the designer a pre-assumption for the proper

depth based on the intended function for the cavern. Furthermore, the finite element anal-

ysis revealed that the excavation procedure significantly changes the stress state of the

rock salt and it has to be modelled to achieve a realistic response prediction. A compar-

ative study concluded that a detailed excavation procedure including leaching debrining

and first filling can be substituted with a simplified scenario, without a remarkable impact

on the final stress state of the cavity’s boundary at the end of the excavation phase.

Three different constitutive models have been employed to simulate the rock salt be-

haviour, each of them has different features to approximate the response of the rock salt.

However, the realistic and comprehensive prediction of the rock salt cavity behaviour,

obtained from a deterministic simulation, depends on the accuracy level of the conducted

numerical analysis. The geotechnical design procedure of a rock salt cavity like each com-

putational simulation is associated with a level of inevitable uncertainties involved in the

121
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input parameters. Therefore, the probabilistic approaches are utilised in order to achieve

a reliable design. To accomplish this, two different types of randomness, namely, random

variable and random field are considered as the source of uncertainties in the modelling.

In the first one, the entire host rock is assumed as a homogeneous medium, while the lat-

ter one considers the probable heterogeneity using the random field theory. Three global

sensitivity methods have been presented to identify the most effective input variables

on the output uncertainty level. The corresponding uncertainty in the input variables

has been introduced assuming different probabilistic scenarios. The failure probability of

a typical rock salt cavity considering stability and serviceability criteria was evaluated

using crude Monte Carlo simulation and subset simulation methods. In the following,

the reliability-based design has been introduced to determine the safe value of the input

design variables. As it has been mentioned previously, the analysed case studies are syn-

thetic and the assumptions about their design and material parameters are made to be

close to the realistic cases. Nevertheless, the proposed deterministic and non-deterministic

methodologies can be applied analogously to realistic problems.

In the following, the utilised statistical tools are concluded as well as some suggestions

for future studies:

7.1 Sensitivity analysis

Different sensitivity analysis methods in this thesis are employed for investigating the

impacts of the geomaterials constitutive properties uncertainty on an underground struc-

ture response. Utilising the approach of sensitivity analysis, the designer may perform

both quantitative and qualitative investigations on the parameters which have the great-

est effects on the system output variation as well as its reliability. The various aspects

of different methods are described and compared to each other. Furthermore, a primitive

criterion was proposed to choose the most proper sensitivity analysis method based on

the model features like complexity, the number of input parameters, and the required

calculation effort.

7.2 Probabilistic analysis

In the following, the mechanical stability of a typical rock salt cavern in an underground

renewable energy storage facility has been investigated in the framework of a probabilistic

study. To describe the long-term behaviour of rock salt under cyclic and static loading, an
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elasto-viscoplastic creep constitutive law has been introduced. Furthermore, the stability

and serviceability of the rock salt cavern are investigated. In this context, the constitutive

parameters have been represented as random variables with predefined PDF, mean, and

standard deviation. The relevant uncertainties of the governing parameters have been

proposed within three probabilistic scenarios. In order to compute the failure probability

of the system, the classical Monte Carlo-based method as well as the subset simulation

approach, with a considerably less computational burden are employed. A comparative

analysis has justified the accuracy of the subset simulation method. Moreover, the mini-

mal allowable internal pressure in a typical salt cavity, as a governing design parameter,

has been evaluated to avoid any dilatant area around the cavern’s wall.

7.3 Random field discretisation

The existing spatial scatter in host rocks is commonly disregarded in the geotechnical

engineering investigations. However, based on the unavoidable observations and gathered

data sets from different storage fields, this thesis studied the effects of consideration of this

aspect of uncertainty as well. Spatial variations in the geomaterials can be represented

in the design procedure using the random field concept. As a vigorous statistical tool, it

draws inferences from in-situ investigations and tests to describe the spatial variability of

the site and incorporates it to the reliability design concept. The main focus of this chapter

is on the random field discretisation in a probabilistic analysis of a rock salt gas storage

cavity. The Karhunen-Loève expansion has been introduced to generate the random field

and the subset simulation methodology was utilised to facilitate the execution of the Monte

Carlo method. Based on the obtained results, taking into account the heterogeneity of

the rock medium leads to a remarkable difference in the reliability level of the system.

7.4 Future works

This thesis could be developed further based on the findings of this study. Further research

is suggested as follows:

• Consideration of realistic geometry with non-smooth wall to enable the designer to

observe the creation of any dilatant region around the convex and concave zones.

• In case of availability of real field data, the numerical simulation could be vali-

dated. Furthermore, the constitutive model’s parameters could be calibrated using
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further experimental measurements based on the iterative framework proposed in

Chapter 1.

• This study mainly focused on the behaviour prediction of a single cavern, while the

salt cavities are commonly excavated in a storage site including a group of them.

Such a storage field should be constructed in a way to assure non-unwanted effects

on the integrity and function of each individual cavity. Therefore, modelling of a

group of caverns to investigate their probable interactions could be also done in the

future.

• This thesis shown the results of a probabilistic analysis considering no-dilatancy

and limited volume convergence criteria, while it may be extended to investigate the

structure behaviour against the other criteria as no-damage as well as no-tension

and limited subsidence.

• Due to the practical issues, performing measurement procedures for determining

the exact geometry in the cavities are mostly limited in number. Therefore, the

geometrical alterations of the cavern’s shape within the operation phase can also

be regarded as a source of uncertainty. One may extend this study to include the

variability in the geometry of the cavern in the probabilistic analysis.

• Although the spatial variation of the rock salt properties in the vertical direction is

more obvious, consideration of horizontal heterogeneity could also be interesting. It

may reflect different reliability measures for the system.
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Berést, P., Djizanne, H., Brouard, B. & Hévin, G. (2013), Effects of a rapid depressuriza-

tion in a salt cavern, in X.-T. Feng, J. A. Hudson & F. Tan, eds, ‘Rock Characterisation,

Modelling and Engineering Design Methods’, CRC Press, pp. 653–658.

Betz, W., Papaioannou, I. & Straub, D. (2014), ‘Numerical methods for the discretization

of random fields by means of the karhunen-loève expansion’, Computer Methods in
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